Cho tam giác ABC vuông tại A, nội tiếp đường tròn (O; R). Qua B vẽ tiếp tuyến với đường tròn (O) cắt AC tại D. Chứng minh rằng: CA.CD=4R^2
Cho tam giác ABC (góc BAC = 45°) nội tiếp trong đường tròn O đường kính AB. Dựng tiếp tuyến với đường tròn O tại C và gọi H là chân đường vuông góc. Kẻ từ A đến tiếp tuyến đó. AH cắt O tại M (M khác A). Dựng vuông góc với AC. Kẻ từ M cắt AC tại K và AB tại P
a) CM: MKCH nội tiếp
b) Tam giác MAP cân
c) Tìm điều kiện của tam giác ABC để M, K, O thẳng hàng
Làm giúp mình với
a) Xét tứ giác MKCH có
\(\widehat{MKC}=\widehat{MHC}\left(=90^0\right)\)
\(\widehat{MKC}\) và \(\widehat{MHC}\) là hai góc cùng nhìn cạnh MC
Do đó: MKCH là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
đề lằng nhằng:dựng cái gì vuông góc với AC??
Còn câu B ai làm luôn giúp luôn với :((
Cho đương tròn tâm O, đường kính BC cố định và điểm A thuộc đường tròn (O). kẻ AH vuông góc BC tại H. Gọi I,K theo thứ tự là tâm đường tròn nội tiếp của tam giác AHB và AHC. Đường thẳng IK cắt AB tại M và cắt AC tại N.
a) Chứng minh tam giác AMN vuông cân
b) Xác định vị trí của điểm A để tứ giác BCNM nội tiếp
c) Chứng minh diện tích tam giác AMN nhỏ hơn hoặc bằng 1/2 diện tích tam giác ABC
Cho tam giác ABC, đường cao AM nội tiếp đường tròn đường kính AA’. a/ Hai đường cao BN, CP cắt nhau tại H, PN cắt AA’ tại S. Chứng minh BPNC và A’SNC nội tiếp. b/ Chứng minh PN vuông góc AA’.
xét tứ giác BPNC:
\(\widehat{P}=90\) (CP là đường cao)
\(\widehat{N}\)=90 (BN là đường cao)
⇒ \(\widehat{P}=\widehat{N}\)= 180
⇒ tứ giác BPNC là tứ giác nội tiếp
xét tứ giác A'SNC:
\(\widehat{N}=90\) (BN là đường cao)
\(\widehat{S}=90\) (PN\(\perp\)AB ⇒ NS\(\perp\)AB)
⇒\(\widehat{N}=\widehat{S}=180\)
⇒ tứ giác A'SNC là tứ giác nội tiếp
cho tam giác ABC vuông tại B.Gọi (O;R) và (i;r) lần lượt là đường tròn ngoại tiếp,nội tiếp của tam giác ABC.
a) chứng minh : AB+BC=2(R+r)
b) gọi H là chân đường cao kẻ từ B của tam giác ABC. Dựng HP vuông góc với BC tại P và HN vuông góc với AB tại N.Chứng minh rằng đường thẳng NP vuông góc với đường thẳng BO
c) tiếp tuyến tại B cắt các tiếp tuyến tại A và tại C của đường tròn (O;R) theo thứ tự tại D và E.gọi K là giao điểm của CD và AE.chứng minh rằng ba điểm B;K;H thẳng hàng.
xin lỗi mk mới hok lớp 5
Cho tam giác ABC nội tiếp đường tròn đường kính AA' ,đường cao AM.
a)hai đường cao BN,CP cắt nhau tại H & PN cắt AA' tại S. CM: các tứ giác BPNC & A'SNC nội tiếp.
b)cm:PN vuông góc với AA'.
Giải giúp tớ với, cần câu trả lời gấp ạk, thanks
1 / Cho tam giác ABC, góc A=90 độ, AC=3AB. D, E thuộc AC sao cho AD=DE=EC.
a/ Gọi M là điểm đối xứng với B qua D. Chứng minh rằng ABCM là tứ giác nội tiếp
b/ Chứng minh rằng góc ACB+ góc AEB= 45 độ
2/ Cho đường tròn tâm O bán kính R=3cm và một điểm S cố định bên ngoài đường tròn sao cho SO=5cm. Vẽ tiếp tuyến SA với A là tiếp điểm và cát tuyến SCB không qua tâm sao cho O nằm trong góc ASB ( C nằm giữa S và B ). Gọi H là trung điểm của CB
a) Chứng minh rằng tứ giác SAOH nội tiếp một đường tròn
b) Tính chu vi và diện tích của đường tròn ngoại tiếp tứ giác SAOH
c) Tính tích SC.SB
3/ Cho tam giác ABC nội tiếp đường tròn tâm O đường kính AB=2R. Lấy H là trung điểm của dây BC. Tia OH cắt đường tròn tại D, AD lần lượt cắt tiếp tuyến Bx của đường tròn tại E và F
a) Chứng minh AD là tia phân giác của góc CAB
b) Chứng minh tứ giác ECDF là tứ giác nội tiếp
c) Cho CD= R=căn10cm. Tính diện tích của hình viên phân giới hạn bởi cung CDB với dây CB
4/ Cho tam giác ABC cân ở A nội tiếp đường tròn O đường kính I. Gọi E là trung điểm của AB. K là trung điểm của OI. Chứng minh rằng AEKC là tứ giác nội tiếp
5/Cho tam giác ABC. Các đường phân giác trong của B, C cắt nhau tại S, các đường phân giác ngoài của B và C cắt nhau tại E. Chứng minh rằng BSCE là 1 tứ giác nội tiếp.
LƯU Ý
Các bạn học sinh KHÔNG ĐƯỢC đăng các câu hỏi không liên quan đến Toán, hoặc các bài toán linh tinh gây nhiễu diễn đàn. Online Math có thể áp dụng các biện pháp như trừ điểm, thậm chí khóa vĩnh viễn tài khoản của bạn nếu vi phạm nội quy nhiều lần.
Chuyên mục Giúp tôi giải toán dành cho những bạn gặp bài toán khó hoặc có bài toán hay muốn chia sẻ. Bởi vậy các bạn học sinh chú ý không nên gửi bài linh tinh, không được có các hành vi nhằm gian lận điểm hỏi đáp như tạo câu hỏi và tự trả lời rồi chọn đúng.
Mỗi thành viên được gửi tối đa 5 câu hỏi trong 1 ngày
Các câu hỏi không liên quan đến toán lớp 1 - 9 các bạn có thể gửi lên trang web h.vn để được giải đáp tốt hơn.
Cho tam giác ABC nội tiếp trong nửa đường tròn tâm O đường kính AB=2R . Lấy H là trung điểm của dây BC . Tia OH cắt đường tròn tại D . Tia AC , AD lần lượt cắt tiếp tuyến Bx của nửa đường tròn tại E và F
a, Chứng minh AD là tia phân giác của góc CAB
b, Chứng minh tứ giác ECDF là tứ giác nội tiếp
Cho tam giác ABC nhọn (AB<AC) nội tiếp đường tròn tâm O, đường kính R. 3 đường cao AB,BM,CN của tam giác ABC cắt nhau tại H
a/ Chứng minh tứ giác CDHM và ABDM nội tiếp. Xác định tâm I của đường tròn ngoại tiếp tứ giác CDHM
b/ Chứng minh: AN.AB= AH.AD
c/ Gọi K là giao điểm của hai đường tròn tâm I và đường tròn tâm O. Chứng minh: OHKI là hình thang
d/ Gọi S là trung điểm của BH. Chứng minh: nếu MK vuông góc với BC thì 3 điểm K,D,S thẳng hàng
Cho tam giác ABC đều nội tiếp đường tròn tâm (O) . Đường tròn tâm (O') đi qua O và B cắt BC,OA,AB lần lượt tại M,N,K . Đường tròn (O') cắt cung AB tại E , EM cắt đường tròn (O) tại I
a) Chứng minh tam giác MBI cân tại M
b) Chứng minh IM=KA
a) Ta có ^BME = ^BOE = 2.^BIE (= 2.^BIM) => ^BIM = ^MBI = ^BME/2 => \(\Delta\)MBI cân tại M (đpcm).
b) Ta dễ thấy ^KNA = ^OBA = ^OAB (= 300) => \(\Delta\)NKA cân tại K => KA = KN (1)
Lại có ^BEN = 1800 - ^BON = 600 = ^CAB = ^BEC => Tia EN trùng tia EC hay N,E,C thẳng hàng
Từ đó ^CMN = ^BEC = 600 = ^CBA => MN // BK
Mà tứ giác BMNK nội tiếp (O') nên KN = BM = IM (Vì \(\Delta\)MBI cân tại M) (2)
Từ (1) và (2) suy ra IM = KA (đpcm).