vẽ tứ giác ABCD có AC cắt BD tại O sao cho OC>OA ; OD>OB. lấy M và N là trung điểm của BD và AC . Đường thẳng MN cắt AD và BC lần lượt ở I và K. Chứng minh DI/IA = BK/KC
Cho tứ giác ABCD có AC cắt BD tại O ,biết OA=OB =OC=OD. Tứ giác ABCD là hình gì
1) Cho tứ giác ABCD có AC cắt BD tại O . Biết OA = 3cm, OB = 4cm , AB =5cm , OC =2OA ; OD=2OB .
Khi đó CD bằng: A.) 5cm. B.) 10cm . C.) 15cm . D.) 20cm .
2) Cho tứ giác ABCD . Hai đường chéo AC và BD cắt nhau tại O . Gọi E là điểm trong của tam giác OCD . Số tứ giác (tứ giác lồi và tứ giác không lồi) nhận 4 trong 5 điểm A, B , .., D , E làm đỉnh là:
A) 3
B) 6
C) 9
D) 12
Cho tứ giác ABCD có các đường chéo cắt nhau tại O. Cho biết AC= 4cm, BD= 5cm, \(\widehat{AOB=50^o}\). Tính diện tích tứ giác ABCD.
Vẽ \(AH\perp BD,CK\perp BD\) . Chú ý: \(AH=OA.\sin50^o,CK=OC.\sin50^o.\)
Thanks
Sử dụng công thức (1): Với a, b, c là 3 cạnh đối diện của \(\widehat{A}\), \(\widehat{B}\), \(\widehat{C}\) của tam giác ABC thì \(S_{ABC}=\frac{1}{2}AB\). \(AC\sin A\)
Chứng minh: Kẻ \(BH\perp AC\Rightarrow S_{ABC}=\frac{BH.AC}{2}\)
Xét tam giác ABH vuông thì sin \(A=\frac{BH}{AB}\Rightarrow BH=\sin A.AC\)
Từ hai điều trên suy ra: \(S_{ABC}=\frac{AB.AC.\sin A}{2}\left(đpcm\right)\)
Trở lại bài toán:
Sử dụng công thức \(\sin\alpha=\sin\left(180-\alpha\right)\Rightarrow\sin AOD=\sin AOB=\sin BOC=\sin DOC\)
Áp dụng công thức (1):
\(S_{ABCD}=S_{AOB}=S_{AOD}=S_{DOC}=S_{BOC}=\frac{AO.OB.\sin AOB+AO.DO.\sin AOD+DO.CO.\sin DOC+BO.CO.\sin BOC}{2}\)
\(=\frac{\sin AOB\left(AO.OB+AO.OD+DO.OC+BO.OC\right)}{2}=\frac{\sin AOB\left(AO.BD+OC.BD\right)}{2}=\frac{\sin50^o.BD.AC}{2}\)
\(=\frac{20\sin50}{2}=10\sin50\)
Cho tứ giác ABCD có hai đường chéo AC và BD cắt nhau tại O thoả mãn OA = OC và góc OAD = OCB. Chứng minh tứ giác ABCD là hình bình hành.
Lưu ý: Giải cách khác ngoài cách chứng minh 2 đường chéo
Xét ΔOAD và ΔOCB có
\(\widehat{OAD}=\widehat{OCB}\)
OA=OC
\(\widehat{AOD}=\widehat{COB}\)
Do đó: ΔOAD=ΔOCB
=>AD=BC
\(\widehat{OAD}=\widehat{OCB}\)
mà hai góc này ở vị trí so le trong
nên AD//BC
Xét tứ giác ABCD có
AD//BC
AD=BC
Do đó: ABCD là hình bình hành
vẽ tứ giác ABCD có AC cắt BD tại O sao cho OA>OC; OD>OB. gọi M và N là trung điểm của BD và AC. đường thẳng MN cắt AD và BC lần lượt ở I và K. kẻ hai tia Ax và Cy cùng song song với BD và cùng cắt IK lần lượt ở E và F. chứng minh :
1) DM/AE = BM/CF
2) DI/IA = BK/KC
Cho tứ giác ABCD thỏa mãn góc DAC=DBC. AC cắt BD tại E. Các đường trung trực của AD và BC cắt nhau tại O. Giả sử rằng điểm O nằm bên trong tam giác EDC.
a)CMR góc ODA+OCA=ODB+OCB
b)CMR OA=OB=OC=OD
giúp mik với
Cho tứ giác ABCD có AC cắt BD tại O biết OA=OC, OB=OD.Chứng minh AB//CD, AD//BC.
Xét tứ giác ABCD có
O là trung điểm chung của AC và BD
nên ABCD là hình bình hành
Suy ra: AB//CD; AD//BC
Tứ giác ABCD có hai góc vuông tại đỉnh A và C ,(BC < AD) AB cắt CD tại E . Hai đường chéo AC và BD cắt nhau tại O , góc BAO = góc BDC a, CM : Δ EAD đồng dạng với Δ ECB b, CM : OD . OB = OA . OC
Cho hình bình hành ABCD có hai đường chéo AC và BD cắt nhau tại O. Gọi M, N, P, Q lần lượt là trung điểm các đoạn OA, OB, OC, OD
1) Chứng minh rằng tứ giác MNPQ là hình bình hành
2) Chứng minh rằng các tứ giác ANCQ, BPDM là các hình bình hành
1) Vì ABCD là hình bình hành
=> OA=OC, OB=OD
Ta có: OM=OA/2
OP=OC/2
Mà OA=OC => OM=OP
Cm tương tự ta được OQ=ON
Tứ giác MNPQ có OM=OP. OQ=ON
=> MNPQ là hình bình hành
2) Tứ giác ANCQ có OA=OC (cmt), OQ=ON (cmt)
Suy ra tứ giác ANCQ là hình bình hành
Tứ giác BPDM có OB=OD (cmt), OM=OP (cmt)
Suy ra tứ giác BPDM là hình bình hành