Cho tam giác ABC có Góc A=900 ; BD là phân giác của góc B (D thuộc AC).Trên tia BC lấy điểm E sao cho BA=BE
a) Chứng minh DE vuông góc với BE
b) Chứng minh BD là trung trực của AE
c)Kẻ AH vuông góc với BC. So sánh EH và EC
Cho tam giác ABC và tam giác MNP có A ^ = M ^ = 90 0 , C ^ = P ^ . Cần điều kiện gì để hai tam giác ABC và tam giác MNP bằng nhau theo trường hợp cạnh góc vuông – góc nhọn kề?
A. A C = M P
B. A B = M N
C. B C = N P
D. A C = M N
Ta có: C ^ = P ^ mà góc C và góc P là hai góc nhọn kề của tam giác ABC và tam giác MNP
Do đó để tam giác ABC và tam giác MNP bằng nhau theo trường hợp cạnh góc vuông – góc nhọn kề thì cần thêm điều kiện A C = M P
Đáp án A
Cho tam giác ABC có góc B và góc C nhỏ hơn 900 . Vẽ ra phía ngoài tam giác ấy các tam giác vuông cân ABD và ACE ( trong đó góc ABD và góc ACE đều bằng 900 ), vẽ DI và EK cùng vuông góc với đường thẳng BC. AH là đường cao của tam giác ABC. Chứng minh rằng: a. BI=AH; EK = HC; b. BC = DI + EK.:
Bài 5: Cho tam giác ABC có A = 900 ; 2B = 7C. a) Tính số đo góc B; C b) Kẻ AD là tia phân giác của góc A. Tính góc ADC
a) Ta có: \(2\widehat{B}=7\widehat{C}\Rightarrow\widehat{C}=\dfrac{2}{7}\widehat{B}\)
Ta có: Tam giác ABC vuông tại A
\(\Rightarrow\widehat{B}+\widehat{C}=90^0\)
\(\Rightarrow\widehat{B}+\dfrac{2}{7}\widehat{B}=90^0\)\(\Rightarrow\dfrac{9}{7}\widehat{B}=90^0\Rightarrow\widehat{B}=70^0\)
\(\Rightarrow\widehat{C}=\dfrac{2}{7}\widehat{B}=20^0\)
b) Ta có: AD là phân giác góc A
\(\Rightarrow\widehat{DAC}=\dfrac{1}{2}\widehat{A}=45^0\)
Xét tam giác ADC có:
\(\widehat{ADC}+\widehat{DAC}+\widehat{C}=180^0\)
\(\Rightarrow\widehat{ADC}=180^0-\widehat{DAC}-\widehat{C}=180^0-45^0-20^0=115^0\)
cho tam giác abc có góc A =900 trung tuyển AM=5cm thì cạch huyền BC bằng
Cho tam giác ABC, có góc A = 900 . Tia phân giác BE của góc ABC ( E AC ). Trên BC lấy M sao cho BM=BA. a) Chứng minh BEA BEM b) Chứng minh EM BC c) So sánh góc ABC và góc MEC
Bài 4 : Cho tam giác ABC có A = 900 . BE là tia phân giác ABC (E thuộcAC).
Trên cạnh BC lấy điểm D sao cho AB = BD.
a) Chứng minh rằng:tam giác ABE = DBE.
b) Chứng minh rằng: DBE là tam giác vuông.
c) Chứng minh rằng: góc ABC = góc DEC .
d) Trên tia đối của tia AB lấy điểm F sao cho AF = DC. Chứng minh rằng: F, E, D thẳng hàng.
a: Xét ΔABE và ΔDBE có
BA=BD
\(\widehat{ABE}=\widehat{DBE}\)
BE chung
Do đó: ΔABE=ΔDBE
Cho tam giác ABC có , biết . Số đo của góc A là:
A. 300 B. 600 C.900 D. 1200
Chọn câu đúng nhất.1 .Cho ∆ ABC vuông cân tại A. vậy góc B bằng:A. 600B. 900C. 450D. 12002. Một tam giác là vuông nếu độ dài 3 cạnh của nó là:A. 2,3,4 B. 3,4,5 C. 4,5,6 D. 6,7,83. Một tam giác cân có góc ở đáy là 350 thì góc ở đỉnh có số đo là:A. 1000B. 1100C. 850D. 12004. Tam giác ABC có BC = 3cm ; AC = 5cm ; AB = 4cm. Tam giác ABC vuông tại đâu?A. Tại B B. Tại C C. Tại A D. Không phải là tam giác vuông5. Tam giác ABC có AB = AC = BC thì tam giác ABC là A. Tam giác nhọn B. Tam giác cân C. Tam giác vuông D. Tam giác đều6. Tam giác nào vuông nếu độ lớn ba góc kà:A. 300, 700, 800B. 200, 700, 900 C. 650, 450, 700D. 600, 600, 6007. Tam giác cân là tam giác có:A. Hai cạnh bằng nhau -B. Ba cạnh bằng nhau - C. Một góc bằng 600 - D. Một góc bằng 900
có ai bt giải bài này k giúp mk vs mk đg rất rất cần mong các bạn giúp cho
Bài 1:cho tam giác ABC có góc B= 600, góc C=500, AC=35cm. Tính diện tích tam giác ABC
Bài 2 : cho tứ giác ABCD có góc A = góc D= 900, góc C=400, AB=4cm, AD=3cm. Tính diện tích tứ giác
mong các bn giúp cho
1.
\(A+B+C=180^0\Rightarrow A=180^0-\left(B+C\right)=70^0\)
Kẻ đường cao BD
Trong tam giác vuông ABD:
\(cotA=\dfrac{AD}{BD}\Rightarrow AD=BD.cotA\)
Trong tam giác vuông BCD:
\(cotC=\dfrac{CD}{BD}\Rightarrow CD=BD.cotC\)
\(\Rightarrow AD+CD=BD.cotA+BD.cotC\)
\(\Rightarrow AC=BD.\left(cotA+cotC\right)\)
\(\Rightarrow BD=\dfrac{AC}{cotA+cotC}\)
\(\Rightarrow S_{ABC}=\dfrac{1}{2}BD.AC=\dfrac{1}{2}.\dfrac{AC^2}{cotA+cotC}=\dfrac{35^2}{2\left(cot70^0+cot50^0\right)}\approx509,1\left(cm^2\right)\)
2.
Ta có \(A+D=180^0\Rightarrow AB||CD\) (hai góc trong cùng phía bù nhau)
\(\Rightarrow\) Tứ giác ABCD là hình thang vuông tại A và D
Từ B kẻ BE vuông góc CD \(\Rightarrow ABED\) là hình chữ nhật (tứ giác có 3 góc vuông)
\(\Rightarrow\left\{{}\begin{matrix}DE=AB=4\left(cm\right)\\BE=AD=3\left(cm\right)\end{matrix}\right.\)
Trong tam giác vuông BCE:
\(tanC=\dfrac{BE}{CE}\Rightarrow CE=\dfrac{BE}{tanC}=\dfrac{3}{tan40^0}\approx3,6\left(cm\right)\)
\(\Rightarrow CD=DE+CE=4+3,6=7,6\left(cm\right)\)
\(\Rightarrow S_{ABCD}=\dfrac{1}{2}AD.\left(AB+CD\right)=\dfrac{1}{2}.3.\left(4+7,6\right)=17,4\left(cm^2\right)\)