Những câu hỏi liên quan
TH
Xem chi tiết
NM
Xem chi tiết
DA
Xem chi tiết
NM
30 tháng 9 2021 lúc 15:37

\(a,AB^2+AC^2=15^2+20^2=625=25^2=BC^2\)

Vậy ABC là tam giác vuông tại A (pytago đảo)

\(b,\)Áp dụng HTL tam giác ABC vuông tại A, đường cao AH

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\\AH^2=BH\cdot HC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=9\left(cm\right)\\CH=\dfrac{AC^2}{BC}=12\left(cm\right)\\AH=\sqrt{9\cdot12}=6\sqrt{3}\left(cm\right)\end{matrix}\right.\)

Vì AM là phân giác nên \(\dfrac{MB}{MC}=\dfrac{AB}{AC}=\dfrac{3}{4}\Rightarrow MB=\dfrac{3}{4}MC\)

Mà \(MB+MC=BC=25\Rightarrow\dfrac{7}{4}MC=25\)

\(\Rightarrow MC=\dfrac{100}{7}\left(cm\right);MB=\dfrac{75}{7}\left(cm\right)\)

Bình luận (0)
NH
Xem chi tiết
ML
7 tháng 5 2016 lúc 19:35

đổi 8dm=80cm

ta có AB+BC+AC=80

hay 30+25+AC=80

AC=80-30-25

AC=25

 

Bình luận (0)
TC
7 tháng 5 2016 lúc 19:42

Đổi 8 dm=80 cm

Chu vi hình tam giác ABC là:
    AB+AC+BC=80(cm)

Ta có:

 AB+AC+BC=80 cm

Thay số:30+25+AC=80 cm

               AC=80-(30+25)

                AC=25 cm

Vậy cạnh AC là 25 cm

Bình luận (0)
TC
7 tháng 5 2016 lúc 19:49

Bài Mai Linh làm chưa được đầy đủ mà sao quản lí vẫn tick nhỉ

Bình luận (0)
NL
Xem chi tiết
NT
10 tháng 9 2021 lúc 14:21

Ta có : \(\frac{HB}{HC}=4\Rightarrow HB=4HC\)

lại có : \(BC=HB+CH\Rightarrow25=4HC+CH\Leftrightarrow5HC=25\Leftrightarrow HC=5\)cm 

=> \(HB=4.5=20\)cm 

Xét tam giác ABC vuông tại A, đường cao AH

* Áp dụng hệ thức : \(AB^2=BH.BC=20.25\Rightarrow AB=10\sqrt{5}\)cm 

* Áp dụng hệ thức : \(AH^2=HC.HB=100\Rightarrow AH=10\)cm 

* Áp dụng hệ thức : \(AC^2=CH.BC=5.25\Rightarrow AC=5\sqrt{5}\)cm

\(S_{ABC}=\frac{1}{2}AH.BC=\frac{1}{2}.10.25=\frac{250}{2}=145\)cm2

Bình luận (0)
 Khách vãng lai đã xóa
LT
Xem chi tiết
UN
29 tháng 10 2016 lúc 19:21

MH ơ đâu vậy

Bình luận (0)
NT
Xem chi tiết
NM
19 tháng 9 2021 lúc 10:10

\(1,\)

\(a,\) Áp dụng HTL tam giác

\(\left\{{}\begin{matrix}AH^2=CH\cdot BH\\AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BH=\dfrac{AH^2}{CH}=\dfrac{25}{6}\left(cm\right)\\AB=\sqrt{\dfrac{25}{6}\left(\dfrac{25}{6}+6\right)}=\dfrac{5\sqrt{61}}{6}\left(cm\right)\\AC=\sqrt{6\left(\dfrac{25}{6}+6\right)}=\sqrt{61}\left(cm\right)\end{matrix}\right.\\ BC=\dfrac{25}{6}+6=\dfrac{61}{6}\left(cm\right)\)

\(b,S_{ABC}=\dfrac{1}{2}AH\cdot BC=\dfrac{1}{2}\cdot5\cdot\dfrac{61}{6}=\dfrac{305}{12}\left(cm^2\right)\)

Bình luận (0)
TL
Xem chi tiết
NN
Xem chi tiết
LL
29 tháng 8 2021 lúc 11:28

a) Xét tam giác ABC có:

BD là tia phân giác \(\widehat{BAC}\)

\(\Rightarrow\dfrac{AB}{AC}=\dfrac{BD}{DC}=\dfrac{15}{20}=\dfrac{3}{4}\)(tính chất)

 \(\Rightarrow\dfrac{DB}{3}=\dfrac{DC}{4}=\dfrac{DB+DC}{3+4}=\dfrac{BC}{7}=\dfrac{25}{7}\)(tính chất dãy tỉ số bằng nhau)

\(\Rightarrow\left\{{}\begin{matrix}DB=\dfrac{25.3}{7}=\dfrac{75}{7}\left(cm\right)\\DC=\dfrac{25.4}{7}=\dfrac{100}{7}\left(cm\right)\end{matrix}\right.\)

b) Kẻ đường cao AH của tam giác ABC

\(\Rightarrow\dfrac{S_{ACD}}{S_{ABC}}=\dfrac{\dfrac{1}{2}.AH.DC}{\dfrac{1}{2}.AH.BC}=\dfrac{DC}{BC}=\dfrac{100}{7}:25=\dfrac{4}{7}\)

Bình luận (0)
NT
29 tháng 8 2021 lúc 12:51

a: Xét ΔABC có 

AD là đường phân giác ứng với cạnh BC

nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)

hay \(\dfrac{BD}{15}=\dfrac{CD}{20}\)

mà BD+CD=25cm

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BD}{15}=\dfrac{CD}{20}=\dfrac{25}{35}=\dfrac{5}{7}\)

Do đó: \(BD=\dfrac{75}{7}cm;CD=\dfrac{100}{7}cm\)

Bình luận (0)
LD
Xem chi tiết