Cho \(\Delta ABC\) có \(\widehat{A}=50^0;\widehat{B}:\widehat{C}=2:3\). So sánh các cạnh của \(\Delta ABC\)
cho \(\Delta ABC=\Delta MNQ\) biết \(\widehat {\rm{A}}={65^0}\) , \(\widehat {\rm{Q}}={50^0}\)
số đó góc B bằng :
Cho \(\Delta ABC=\Delta DIK;\widehat{B}=50^0;\widehat{K}=40^0\). Điền vào chỗ trống :
a) \(\widehat{A}=........\)
b) \(\widehat{I}=........\)
c) \(\widehat{C}=........\)
\(\widehat{A}=90^0;\widehat{I}=50^0;\widehat{C}=40^0\)
Cho \(\Delta\)ABC có \(\widehat{A}\)=800,\(\widehat{B}\)=500
a)CMR:\(\Delta\)ABC cân
b)Ddường thẳng song song với BC cắt tia đối của tia AB ở D,cắt tia đối của tia AC ở E.CMR:\(\Delta\)ADE cân
a) Xét tam giác ABC có :\(\widehat{A}\)+\(\widehat{B}\)+\(\widehat{C}\)=180\(^0\)( tổng 3 góc trong tam giác)
80\(^0\)+50\(^0\)+\(\widehat{C}\)=180\(^0\)
\(\widehat{C}\)=180\(^0\)-(80\(^0\)+50\(^0\))
\(\widehat{C}\)=50\(^0\)
\(\Rightarrow\)tam giác ABC cân tại A
b) Ta có DE//BC
\(\Rightarrow\)\(\widehat{D}\)=\(\widehat{B}\)
\(\Rightarrow\)\(\widehat{E}\)=\(\widehat{C}\)
Mà \(\widehat{B}\)=\(\widehat{C}\)
\(\Rightarrow\)\(\widehat{D}\)=\(\widehat{E}\)
Vậy: tam giác ADE cân tại A
Ta có tam giác ABC : gA + gB + gC =180 độ (vì kề bù)
Nên gC =180 - gB -gC =180-50-80=50 độ
Vì gC=gB mà chúng ở góc đáy
Vậy tam giác abc là tam giác cân
b, Vì BC//DE
Nên gD=gB =50 độ vì đồng vị ;gC=gE=50độ vì đồng vị (1)
Từ 1 ta thấy gD =gE
Mà chúng ở góc đáy
Vậy tam giác ADE là tam giác cân
chú ý g là góc
1) Cho ΔABC cân tại A, các đường phân giác AD và BE. Biết \(AD=\dfrac{BE}{2}\).Tính các góc của ΔABC?
2) Cho ΔABC cân tại A, \(\widehat{B}=\widehat{C}=50^0\). Lấy điểm K nằm trong ΔABC sao cho \(\widehat{KBC}=10^0;\widehat{KCB}=30^0\).
a, CM: ΔABK cân.
b, Tính \(\widehat{BAK}\)?
3) Cho ΔABC có đường cao AH\(\left(AH\perp BC\right)\) và đường phân giác BD. Biết \(\widehat{AHD}=45^0\). Tính \(\widehat{ADB}?\)
Giải giúp mình nhé! Nhanh lên!!!!!!!!!!!!!!!!!!!!!!!!
cho \(\Delta ABC\) có \(\widehat A={40^0}\) biết \(\widehat B= 3\widehat C\) tam giác abc là tam giác gì
giúp mik với
\(\widehat{B}+\widehat{C}=140^0\)
\(\Leftrightarrow4\cdot\widehat{C}=140^0\)
\(\Leftrightarrow\widehat{C}=35^0\)
hay \(\widehat{B}=105^0\)
Vậy: ΔABC tù
Cho hai tam giác ABC và MNP thỏa mãn \(\widehat A = 50^\circ ,\,\,\widehat B = 60^\circ ,\,\,\widehat N = 60^\circ ,\,\,\widehat P = 70^\circ \). Chứng minh \(\Delta ABC \backsim \Delta MNP\).
Xét tam giác ABC có:
\(\begin{array}{l}\widehat A + \widehat B + \widehat C = 180^\circ \\ \Rightarrow 50^\circ + 60^\circ + \widehat C = 180^\circ \\ \Rightarrow \widehat C = 70^\circ \end{array}\)
Xét tam giác ABC và tam giác MNP có:
\(\begin{array}{l}\widehat B = \widehat N = 60^\circ \\\widehat C = \widehat P = 70^\circ \end{array}\)
\( \Rightarrow \Delta ABC \backsim \Delta MNP\) (g-g).
Cho\(\Delta ABC\) có \(\widehat{B}=70^0\),\(\widehat{C}=50^0\). Lấy \(M\in AC,N\in AB\)sao cho \(\widehat{ABM}=20^0,\widehat{ACN}=10^0\), Tính \(\widehat{MCN}\)
Dựng tam giác BCD đều sao cho A; D cùng phía vs BC
Cho \(\Delta ABC\)có \(\widehat{A}=50^o\), AB = AC. Tính \(\widehat{B},\widehat{C}\)
Từ đề bài, tam giác ABC cân tại A
\(\Rightarrow\widehat{B}=\widehat{C}=\frac{180^0-\widehat{A}}{2}=\frac{180^0-50^0}{2}=65^0\)
Bài làm
Vì AB = AC ( giả thiết )
=> Tam giác ABC là tam giác cân tại A
=> B = C ( hai cạnh ở đáy )
Xét tam giác ABC cân tại A
Ta có: A + B + C = 180o ( định lí tổng ba góc của tam giác )
hay 50o+B+C=180o
=> B + C = 180o - 50o
=> B + C = 130o
Mà B = C
=> B = C = 130o/2=65o
Vậy B = C = 65o
# Chúc bạn học tốt #
=>
Cho \(\Delta ABC\) có \(\widehat{A}=60^0\); \(\widehat{H}=50^0\). Tia phân giác của góc K cắt EK tại D . Tính \(\widehat{EDK};\widehat{HDK}\)
Xét \(\Delta KEH\) có \(\widehat{K}+\widehat{E}+\widehat{H}=180^0\)
\(\Leftrightarrow\widehat{K}+60^0+50^0=180^0\)
\(\Rightarrow\widehat{K}=180^0-\left(60^0+50^0\right)=70^0\)
Vì KD là tia phân giác của \(\widehat{EKH}\)
\(\Rightarrow\widehat{EKH}=\widehat{DKH}=\frac{\widehat{EKH}}{2}=\frac{70}{2}=35^0\)
* Vì \(\widehat{EDK}\) là góc ngoài đỉnh D của \(\Delta KDH\)
\(\Rightarrow\widehat{EDK}=\widehat{DKH}+\widehat{H}\)
= 350+500 = 850
* Vì \(\widehat{KDH}\) là góc ngoài của đỉnh D của \(\Delta KDE\) nên
\(\widehat{KDH}=\widehat{K}+\widehat{D}\)
= 350 +600 = 950
Vậy góc EDK=850
Góc KDH= 950