Những câu hỏi liên quan
NN
Xem chi tiết
NT
9 tháng 11 2023 lúc 19:48

loading...

loading...

loading...

Bình luận (0)
HT
Xem chi tiết
MA
Xem chi tiết
NL
10 tháng 7 2021 lúc 20:40

\(\Leftrightarrow\left(1-sinx\right)\left(cos2x+3msinx+sinx-1\right)=m\left(1-sinx\right)\left(1+cosx\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=1\Rightarrow x=\dfrac{\pi}{2}\\cos2x+3m.sinx+sinx-1=m\left(1+sinx\right)\left(1\right)\end{matrix}\right.\)

Bài toán thỏa mãn khi (1) có 5 nghiệm khác nhau trên khoảng đã cho thỏa mãn \(sinx\ne1\)

Xét (1):

\(\Leftrightarrow1-2sin^2x+3msinx+sinx-1=m+m.sinx\)

\(\Leftrightarrow2sin^2x-sinx-2m.sinx+m=0\)

\(\Leftrightarrow sinx\left(2sinx-1\right)-m\left(2sinx-1\right)=0\)

\(\Leftrightarrow\left(2sinx-1\right)\left(sinx-m\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=\dfrac{1}{2}\Rightarrow x=\dfrac{\pi}{6};\dfrac{5\pi}{6}\\sinx=m\left(2\right)\end{matrix}\right.\)

\(\Rightarrow\left(2\right)\) có 3 nghiệm khác nhau trên \(\left(-\dfrac{\pi}{2};2\pi\right)\)

\(\Leftrightarrow-1< m< 0\)

Bình luận (1)
MN
Xem chi tiết
HP
1 tháng 8 2021 lúc 14:38

1.

\(cos2x-3cosx+2=0\)

\(\Leftrightarrow2cos^2x-3cosx+1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=1\\cosx=\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=k2\pi\\x=\pm\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\)

\(x=k2\pi\in\left[\dfrac{\pi}{4};\dfrac{7\pi}{4}\right]\Rightarrow\) không có nghiệm x thuộc đoạn

\(x=\pm\dfrac{\pi}{3}+k2\pi\in\left[\dfrac{\pi}{4};\dfrac{7\pi}{4}\right]\Rightarrow x_1=\dfrac{\pi}{3};x_2=\dfrac{5\pi}{3}\)

\(\Rightarrow P=x_1.x_2=\dfrac{5\pi^2}{9}\)

Bình luận (0)
HP
1 tháng 8 2021 lúc 15:09

2.

\(pt\Leftrightarrow\left(cos3x-m+2\right)\left(2cos3x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos3x=\dfrac{1}{2}\left(1\right)\\cos3x=m-2\left(2\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow x=\pm\dfrac{\pi}{9}+\dfrac{k2\pi}{3}\)

Ta có: \(x=\pm\dfrac{\pi}{9}+\dfrac{k2\pi}{3}\in\left(-\dfrac{\pi}{6};\dfrac{\pi}{3}\right)\Rightarrow x=\pm\dfrac{\pi}{9}\)

Yêu cầu bài toán thỏa mãn khi \(\left(2\right)\) có nghiệm duy nhất thuộc \(\left(-\dfrac{\pi}{6};\dfrac{\pi}{3}\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}m-2=0\\m-2=1\\m-2=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=2\\m=3\\m=1\end{matrix}\right.\)

TH1: \(m=2\)

\(\left(2\right)\Leftrightarrow cos3x=0\Leftrightarrow x=\dfrac{\pi}{6}+\dfrac{k2\pi}{3}\in\left(-\dfrac{\pi}{6};\dfrac{\pi}{3}\right)\Rightarrow x=\dfrac{\pi}{6}\left(tm\right)\)

\(\Rightarrow m=2\) thỏa mãn yêu cầu bài toán

TH2: \(m=3\)

\(\left(2\right)\Leftrightarrow cos3x=0\Leftrightarrow x=\dfrac{k2\pi}{3}\in\left(-\dfrac{\pi}{6};\dfrac{\pi}{3}\right)\Rightarrow x=0\left(tm\right)\)

\(\Rightarrow m=3\) thỏa mãn yêu cầu bài toán

TH3: \(m=1\)

\(\left(2\right)\Leftrightarrow cos3x=-1\Leftrightarrow x=\dfrac{\pi}{3}+\dfrac{k2\pi}{3}\in\left(-\dfrac{\pi}{6};\dfrac{\pi}{3}\right)\Rightarrow\left[{}\begin{matrix}x=\pm\dfrac{1}{3}\\x=-1\\x=-\dfrac{5}{3}\end{matrix}\right.\)

\(\Rightarrow m=2\) không thỏa mãn yêu cầu bài toán

Vậy \(m=2;m=3\)

Bình luận (0)
HP
1 tháng 8 2021 lúc 15:23

3.

\(2sin^2\dfrac{x}{4}-3cos\dfrac{x}{4}=0\)

\(\Leftrightarrow2cos^2\dfrac{x}{4}+3cos\dfrac{x}{4}-2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos\dfrac{x}{4}=\dfrac{1}{2}\\cos\dfrac{x}{4}=-2\left(l\right)\end{matrix}\right.\)

\(\Leftrightarrow x=\pm\dfrac{4\pi}{3}+k8\pi\in\left[0;8\pi\right]\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{4\pi}{3}\\x=\dfrac{20\pi}{3}\end{matrix}\right.\)

\(\Rightarrow T=\dfrac{4\pi}{3}+\dfrac{20\pi}{3}=8\pi\)

 

Bình luận (0)
MH
Xem chi tiết
IK
10 tháng 5 2022 lúc 22:51

\(\Leftrightarrow\sin x+\dfrac{\pi}{3}=\dfrac{\pi}{2}+k2\pi\)

\(\Leftrightarrow2x=\dfrac{\pi}{6}+k2\pi\)

\(\Leftrightarrow x=\dfrac{\pi}{12}+k\pi\left(k\in Z\right)\)

Vì x ∈ \(\left[-\pi;-2\pi\right]\) ta có:

\(-2\pi\le\dfrac{\pi}{12}+k\pi\le-\pi\)

\(\Leftrightarrow\dfrac{-25\pi}{12}\le k\pi\le-\dfrac{13\pi}{12}\)

\(\Leftrightarrow-\dfrac{25}{12}\le k\le-\dfrac{13}{12}\)

\(\Leftrightarrow-6.5\approx-\dfrac{25}{12}\le k\le-\dfrac{13}{12}\approx-3.4\)

Do k ∈ Z nên k = -1

Vậy PT có 1 nghiệm / \(\left[-\pi;-2\pi\right]\)

Bình luận (0)
HB
11 tháng 5 2022 lúc 1:49

Ta có: $sin(\frac{\pi}{6})=\frac{1}{2}$

Do đó $sin(\frac{\pi}{6})=sin(x+ \frac{\pi}{3})\Leftrightarrow \left[\begin{matrix} \frac{\pi}{6}=x+\frac{\pi}{3}+2k\pi & \\ \frac{\pi}{6}= \pi-x-\frac{\pi}{3}+2k\pi& \end{matrix}\right.,k\in\mathbb{Z}$

$\Leftrightarrow \left[\begin{matrix} x=-\frac{\pi}{6}-2k\pi& \\ x=\frac{\pi}{2}+2k\pi& \end{matrix}\right.k\in\mathbb{Z}$

Vì $x \in [-\pi;-2\pi]$ nên ta có:

$\left[\begin{matrix} -\pi\ge \frac{-\pi}{6}-2k\pi\ge-2\pi & \\ -\pi\ge \frac{\pi}{2}+2k\pi\ge-2\pi \end{matrix}\right.\Leftrightarrow \left[\begin{matrix} -\frac{5\pi}{6}\ge -2k\pi\ge-\frac{11\pi}{6} & \\ -\frac{3\pi}{2}\ge +2k\pi\ge-\frac{5\pi}{2} \end{matrix}\right.\Leftrightarrow \left[\begin{matrix} \frac{5}{12}\le k\le \frac{11}{12} & \\ -\frac{3}{4}\ge k \ge-\frac{5}{4} & \end{matrix}\right.$

Vì $k\in\mathbb{Z}$ nên: 

$k=-1$

Vậy phương trình có 1 nghiệm trên $[-\pi;-2\pi]$

P/s: em mới học lớp 10 nên không biết làm thế này có đúng không ạ

 

 

 

 

 

 

Bình luận (1)
YS
Xem chi tiết
HB
12 tháng 5 2022 lúc 17:10

Ta có: $sin(\frac{\pi}{6})=\frac{1}{2}$

Do đó $sin(\frac{\pi}{6})=sin(x+ \frac{\pi}{3})\Leftrightarrow \left[\begin{matrix} \frac{\pi}{6}=x+\frac{\pi}{3}+2k\pi & \\ \frac{\pi}{6}= \pi-x-\frac{\pi}{3}+2k\pi& \end{matrix}\right.,k\in\mathbb{Z}$

$\Leftrightarrow \left[\begin{matrix} x=-\frac{\pi}{6}-2k\pi& \\ x=\frac{\pi}{2}+2k\pi& \end{matrix}\right.k\in\mathbb{Z}$

Vì $x \in [-\pi;-2\pi]$ nên ta có:

$\left[\begin{matrix} -\pi\ge \frac{-\pi}{6}-2k\pi\ge-2\pi & \\ -\pi\ge \frac{\pi}{2}+2k\pi\ge-2\pi \end{matrix}\right.\Leftrightarrow \left[\begin{matrix} -\frac{5\pi}{6}\ge -2k\pi\ge-\frac{11\pi}{6} & \\ -\frac{3\pi}{2}\ge +2k\pi\ge-\frac{5\pi}{2} \end{matrix}\right.\Leftrightarrow \left[\begin{matrix} \frac{5}{12}\le k\le \frac{11}{12} & \\ -\frac{3}{4}\ge k \ge-\frac{5}{4} & \end{matrix}\right.$

Vì $k\in\mathbb{Z}$ nên: 

$k=-1$

Vậy phương trình có 1 nghiệm trên $[-\pi;-2\pi]$

Bình luận (0)
JP
Xem chi tiết
NT
7 tháng 9 2023 lúc 21:26

=>2cos2x=pi(loại) hoặc sin x-cosx=0

=>sin x-cosx=0

=>sin(x-pi/4)=0

=>x-pi/4=kpi

=>x=kpi+pi/4

mà x\(\in\left[-pi;pi\right]\)

nên \(x\in\left\{\dfrac{pi}{4};-\dfrac{3}{4}pi\right\}\)

=> D

Bình luận (1)
NC
Xem chi tiết
NL
16 tháng 9 2021 lúc 23:55

Từ đường tròn lượng giác, trên \(\left(-\dfrac{\pi}{2};3\pi\right)\):

- Nếu \(0< t< 1\) thì \(sinx=t\) có 4 nghiệm

- Nếu \(-1< t< 0\) thì \(sinx=t\) có 3 nghiệm

- Nếu \(t=0\) thì \(sinx=t\) có 3 nghiệm

- Nếu \(t=1\) thì \(sinx=t\) có 2 nghiệm

- Nếu \(t=-1\) thì \(sinx=t\) có 1 nghiệm

Do đó pt đã cho có 5 nghiệm pb trong khoảng đã cho khi:

\(2t^2-\left(5m+1\right)t+2m^2+2m=0\) có 2 nghiệm pb thỏa mãn:

- TH1: \(\left\{{}\begin{matrix}t_1=-1\\0< t_2< 1\end{matrix}\right.\)

- TH2: \(\left\{{}\begin{matrix}-1< 0< t_1\\t_2=1\end{matrix}\right.\)

- TH3:  \(\left\{{}\begin{matrix}t_1=0\\t_2=1\end{matrix}\right.\)

Về cơ bản, chỉ cần thay 1 nghiệm bằng 0 hoặc 1 rồi kiểm tra nghiệm còn lại có thỏa hay ko là được

Bình luận (1)
BT
Xem chi tiết
TD
Xem chi tiết
AH
7 tháng 7 2020 lúc 11:16

Lời giải:
$\sin (x+\frac{\pi}{4})=1$

$\Rightarrow x+\frac{\pi}{4}=\frac{\pi}{2}+2k\pi$ ($k$ nguyên)

$\Leftrightarrow x=2k\pi+\frac{\pi}{4}=\pi (2k+\frac{1}{4})$

Vì $x\in [0;3\pi]$

$\Leftrightarrow 0\leq \pi (2k+\frac{1}{4})\leq 3\pi$

$\Leftrightarrow 0\leq 2k+\frac{1}{4}\leq 3$

$\Leftrightarrow \frac{-1}{8}\leq k\leq \frac{11}{8}$

Vì $k$ nguyên nên $k\in\left\{0; 1\right\}$

Có 2 giá trị của $k$ thỏa mãn tương ứng có 2 giá trị của $x$ thỏa mãn, hay pt có 2 nghiệm.

Bình luận (0)