Những câu hỏi liên quan
NH
Xem chi tiết
DL
13 tháng 5 2022 lúc 18:29

đặt :

\(F\left(x\right)=\int_0^{x^2}f\left(t\right)dt=xsin\left(\pi x\right)\Leftrightarrow F\left(x^2\right)-F\left(0\right)=xsin\)

\(\left(\pi x\right)\Leftrightarrow F\left(x^2\right)=F\left(0\right)+xsin\left(\pi x\right)\)

lấy đạo hàm \(2\) vế , ta có :

\(\left(F\left(0\right)\right)'=sin\left(\pi x\right)+\pi xcos\left(\pi x\right)+\left(F\left(0\right)\right)'\)

\(\Leftrightarrow2xf\left(x^2\right)=sin\left(\pi x\right)+\pi xcos\left(\pi x\right)\)

thay \(x=2\) , ta có :

\(2.2.f\left(4\right)=sin\left(2\pi\right)+2\pi cos\left(2\pi\right)\Leftrightarrow4f\left(4\right)=2\pi\Leftrightarrow f\left(4\right)=\dfrac{\pi}{2}\)

Bình luận (0)
H24
Xem chi tiết
KS
30 tháng 3 2022 lúc 5:44

Cho hàm số y=f(x)y=f(x) có đạo hàm và liên tục trên [0;π2][0;π2]thoả mãn f(x)=f′(x)−2cosxf(x)=f′(x)−2cosx. Biết f(π2)=1f(π2)=1, tính giá trị f(π3)f(π3)

A. √3+1/2         B. √3−1/2          C. 1−√3/2             D. 0

Bình luận (0)
MV
30 tháng 3 2022 lúc 7:35

B

Bình luận (0)
NL
4 tháng 4 2022 lúc 23:09

\(f'\left(x\right)-f\left(x\right)=2cosx\)

\(\Leftrightarrow e^{-x}.f'\left(x\right)-e^{-x}.f\left(x\right)=2e^{-x}cosx\)

\(\Rightarrow\left[e^{-x}.f\left(x\right)\right]'=2e^{-x}.cosx\)

Lấy nguyên hàm 2 vế:

\(\Rightarrow e^{-x}.f\left(x\right)=\int2e^{-x}cosxdx=e^{-x}\left(sinx-cosx\right)+C\)

Thay \(x=\dfrac{\pi}{2}\Rightarrow e^{-\dfrac{\pi}{2}}.1=e^{-\dfrac{\pi}{2}}+C\Rightarrow C=0\)

\(\Rightarrow f\left(x\right)=sinx-cosx\)

\(\Rightarrow f\left(\dfrac{\pi}{3}\right)=\dfrac{\sqrt{3}-1}{2}\)

Bình luận (0)
HA
Xem chi tiết
NL
5 tháng 3 2023 lúc 16:25

Đề là cho \(\int\limits^{\dfrac{\pi}{2}}_0sin2x.f\left(cos^2x\right)dx=1\)

Tính \(\int\limits^1_0\left[2f\left(1-x\right)-3x^2+5\right]dx\) 

Đúng ko nhỉ?

Xét \(\int\limits^{\dfrac{\pi}{2}}_0sin2x.f\left(cos^2x\right)dx\)

Đặt \(cos^2x=1-u\Rightarrow-2sinx.cosxdx=-du\) \(\Rightarrow sin2xdx=du\)

\(\left\{{}\begin{matrix}x=0\Rightarrow u=0\\x=\dfrac{\pi}{2}\Rightarrow u=1\end{matrix}\right.\) \(\Rightarrow I=\int\limits^1_0f\left(1-u\right)du=\int\limits^1_0f\left(1-x\right)dx\)

\(\Rightarrow\int\limits^1_0f\left(1-x\right)dx=1\)

\(\Rightarrow\int\limits^1_0\left[2f\left(1-x\right)-3x^2+5\right]dx=2\int\limits^1_0f\left(1-x\right)dx-\int\limits^1_0\left(3x^2-5\right)dx\)

\(=2.1-\left(-4\right)=6\)

Bình luận (2)
PB
Xem chi tiết
CT
16 tháng 4 2017 lúc 10:12

Phương pháp: Sử dụng phương pháp đổi biến, đặt t = u(x)

Cách giải:

Đặt

Đổi cận 

Bình luận (0)
PB
Xem chi tiết
CT
19 tháng 8 2018 lúc 12:46

Đáp án A

Bình luận (0)
PB
Xem chi tiết
CT
25 tháng 7 2019 lúc 2:16

Đáp án là D

Bình luận (0)
PB
Xem chi tiết
CT
5 tháng 7 2017 lúc 5:16

Bình luận (0)
PB
Xem chi tiết
CT
30 tháng 5 2018 lúc 16:22

Bình luận (0)
PB
Xem chi tiết
CT
13 tháng 5 2019 lúc 8:38

Bình luận (0)