Số nghiệm thuộc khoảng \(\left(-\Pi;\Pi\right)\) của pt : \(2sinx=1\) là :
A. 4
B. 1
C. 2
D. 3
Trình bày bài giải chi tiết rồi mới chọn đáp án nha các bạn .
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
\(\dfrac{cos4x}{cos2x}=tan2x\)
có số nghiệm thuộc khoảng (0;\(\left(0;\dfrac{\pi}{2}\right)\)
\(\dfrac{cos4x}{cos2x}=tan2x\). ĐKXĐ : \(x\ne\dfrac{\pi}{4}+k.\dfrac{\pi}{2}\), k là số nguyên (tức là sin2x khác 1 và -1)
⇒ cos4x = sin2x
⇔ 1 - 2sin22x = sin2x
⇔ 2sin22x + sin2x - 1 = 0
⇔ \(\left[{}\begin{matrix}sin2x=-1\left(/\right)\\sin2x=\dfrac{1}{2}\left(V\right)\end{matrix}\right.\)
Mà x ∈ \(\left(0;\dfrac{\pi}{2}\right)\)
⇒ \(\left[{}\begin{matrix}x=\dfrac{\pi}{6}\\x=\dfrac{\pi}{3}\end{matrix}\right.\)
số nghiệm của phương trình \(\cos\left(\frac{x}{2}+\frac{\pi}{4}\right)=0\) thuộc khoảng \(\left(\pi;8\pi\right)\)là bao nhiêu ?
Tìm nghiệm của pt:
1) \(2cos2x+\sqrt{2}cos\frac{\pi}{4}=0\) thuộc khoảng (0;2π)
2) \(sin4x-cos4x+\sqrt{2}cos\left(4x-\frac{\pi}{4}\right)=\sqrt{6}\) thuộc khoảng (-π;5π)
1.
\(\Leftrightarrow2cos2x+\sqrt{2}.\frac{\sqrt{2}}{2}=0\)
\(\Leftrightarrow cos2x=-\frac{1}{2}\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{3}+k\pi\\x=-\frac{\pi}{3}+k\pi\end{matrix}\right.\)
\(\Rightarrow x=\left\{\frac{\pi}{3};\frac{4\pi}{3};\frac{2\pi}{3};\frac{5\pi}{3}\right\}\)
2.
\(\Leftrightarrow sin4x-cos4x+sin4x+cos4x=\sqrt{6}\)
\(\Leftrightarrow2sin4x=\sqrt{6}\)
\(\Leftrightarrow sin4x=\frac{\sqrt{6}}{2}>1\)
Pt vô nghiệm
Câu 1: Tích các nghiệm trên khoảng \(\left(\dfrac{\pi}{4};\dfrac{7\pi}{4}\right)\)của phương trình \(cos2x-3cosx+2=0\)
Câu 2: Tìm tất cả các giá trị thực của tham số m để phương trình \(2cos^23x+\left(3-2m\right)cos3x+m-2=0\) có đúng 3 nghiệm thuộc khoảng \(\left(-\dfrac{\pi}{6};\dfrac{\pi}{3}\right)\).
Câu 3: Tính tổng T tất cả các nghiệm của phương trình \(2sin^2\dfrac{x}{4}-3cos\dfrac{x}{4}=0\) trên đoạn \(\left[0;8\pi\right]\).
Câu 4: Giá trị của m để phương trình \(cos2x-\left(2m+1\right)sinx-m-1=0\) có nghiệm trên khoảng \(\left(0;\pi\right)\) là \(m\in[a;b)\) thì a+b là?
Câu 5: Điều kiện cần và đủ để phương trình \(msinx-3cosx=5\) có nghiệm là \(m\in(-\infty;a]\cup[b;+\infty)\) với \(a,b\in Z\). Tính a+b.
Câu 6: Điều kiện để phương trình \(msinx-3cosx=5\) có nghiệm là?
Câu 7: Số nghiệm để phương trình \(sin2x+\sqrt{3}cos2x=\sqrt{3}\) trên khoảng \(\left(0;\dfrac{\pi}{2}\right)\) là?
Câu 8: Tập giá trị của hàm số \(y=\dfrac{sinx+2cosx+1}{sinx+cosx+2}\) là?
Câu 9: Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn \(\left[-2018;2018\right]\) dể phương trình \(\left(m+1\right)sin^2-sin2x+cos2x=0\) có nghiệm?
Câu 10: Có bao nhiêu giá trị nguyên của tham số m để phương trình \(sin2x-cos2x+|sinx+cosx|-\sqrt{2cos^2x+m}-m=0\) có nghiệm thực?
1.
\(cos2x-3cosx+2=0\)
\(\Leftrightarrow2cos^2x-3cosx+1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=1\\cosx=\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=k2\pi\\x=\pm\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\)
\(x=k2\pi\in\left[\dfrac{\pi}{4};\dfrac{7\pi}{4}\right]\Rightarrow\) không có nghiệm x thuộc đoạn
\(x=\pm\dfrac{\pi}{3}+k2\pi\in\left[\dfrac{\pi}{4};\dfrac{7\pi}{4}\right]\Rightarrow x_1=\dfrac{\pi}{3};x_2=\dfrac{5\pi}{3}\)
\(\Rightarrow P=x_1.x_2=\dfrac{5\pi^2}{9}\)
2.
\(pt\Leftrightarrow\left(cos3x-m+2\right)\left(2cos3x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos3x=\dfrac{1}{2}\left(1\right)\\cos3x=m-2\left(2\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow x=\pm\dfrac{\pi}{9}+\dfrac{k2\pi}{3}\)
Ta có: \(x=\pm\dfrac{\pi}{9}+\dfrac{k2\pi}{3}\in\left(-\dfrac{\pi}{6};\dfrac{\pi}{3}\right)\Rightarrow x=\pm\dfrac{\pi}{9}\)
Yêu cầu bài toán thỏa mãn khi \(\left(2\right)\) có nghiệm duy nhất thuộc \(\left(-\dfrac{\pi}{6};\dfrac{\pi}{3}\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}m-2=0\\m-2=1\\m-2=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=2\\m=3\\m=1\end{matrix}\right.\)
TH1: \(m=2\)
\(\left(2\right)\Leftrightarrow cos3x=0\Leftrightarrow x=\dfrac{\pi}{6}+\dfrac{k2\pi}{3}\in\left(-\dfrac{\pi}{6};\dfrac{\pi}{3}\right)\Rightarrow x=\dfrac{\pi}{6}\left(tm\right)\)
\(\Rightarrow m=2\) thỏa mãn yêu cầu bài toán
TH2: \(m=3\)
\(\left(2\right)\Leftrightarrow cos3x=0\Leftrightarrow x=\dfrac{k2\pi}{3}\in\left(-\dfrac{\pi}{6};\dfrac{\pi}{3}\right)\Rightarrow x=0\left(tm\right)\)
\(\Rightarrow m=3\) thỏa mãn yêu cầu bài toán
TH3: \(m=1\)
\(\left(2\right)\Leftrightarrow cos3x=-1\Leftrightarrow x=\dfrac{\pi}{3}+\dfrac{k2\pi}{3}\in\left(-\dfrac{\pi}{6};\dfrac{\pi}{3}\right)\Rightarrow\left[{}\begin{matrix}x=\pm\dfrac{1}{3}\\x=-1\\x=-\dfrac{5}{3}\end{matrix}\right.\)
\(\Rightarrow m=2\) không thỏa mãn yêu cầu bài toán
Vậy \(m=2;m=3\)
3.
\(2sin^2\dfrac{x}{4}-3cos\dfrac{x}{4}=0\)
\(\Leftrightarrow2cos^2\dfrac{x}{4}+3cos\dfrac{x}{4}-2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos\dfrac{x}{4}=\dfrac{1}{2}\\cos\dfrac{x}{4}=-2\left(l\right)\end{matrix}\right.\)
\(\Leftrightarrow x=\pm\dfrac{4\pi}{3}+k8\pi\in\left[0;8\pi\right]\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{4\pi}{3}\\x=\dfrac{20\pi}{3}\end{matrix}\right.\)
\(\Rightarrow T=\dfrac{4\pi}{3}+\dfrac{20\pi}{3}=8\pi\)
Phương trình \(\sin2x=\frac{1}{2}\) có số nghiệm thuộc khoảng \(\left(0;2\pi\right)\) là:
Cho phương trình (1-Sinx)(Cos2x + 3mSinx+Sinx-1)=\(mCos^2x\) (m là tham số). Tìm các giá trị thực của m để phương trình có 6 nghiệm khác nhau thuộc khoảng \(\left(-\dfrac{\Pi}{2};2\Pi\right)\)
\(\Leftrightarrow\left(1-sinx\right)\left(cos2x+3msinx+sinx-1\right)=m\left(1-sinx\right)\left(1+cosx\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=1\Rightarrow x=\dfrac{\pi}{2}\\cos2x+3m.sinx+sinx-1=m\left(1+sinx\right)\left(1\right)\end{matrix}\right.\)
Bài toán thỏa mãn khi (1) có 5 nghiệm khác nhau trên khoảng đã cho thỏa mãn \(sinx\ne1\)
Xét (1):
\(\Leftrightarrow1-2sin^2x+3msinx+sinx-1=m+m.sinx\)
\(\Leftrightarrow2sin^2x-sinx-2m.sinx+m=0\)
\(\Leftrightarrow sinx\left(2sinx-1\right)-m\left(2sinx-1\right)=0\)
\(\Leftrightarrow\left(2sinx-1\right)\left(sinx-m\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=\dfrac{1}{2}\Rightarrow x=\dfrac{\pi}{6};\dfrac{5\pi}{6}\\sinx=m\left(2\right)\end{matrix}\right.\)
\(\Rightarrow\left(2\right)\) có 3 nghiệm khác nhau trên \(\left(-\dfrac{\pi}{2};2\pi\right)\)
\(\Leftrightarrow-1< m< 0\)
Tìm m để phương trình sau có 5 nghiệm phân biệt thuộc khoảng \(\left(-\dfrac{\pi}{2};3\pi\right)\)
2sin2x - (5m + 1)sinx + 2m2 + 2m = 0
Từ đường tròn lượng giác, trên \(\left(-\dfrac{\pi}{2};3\pi\right)\):
- Nếu \(0< t< 1\) thì \(sinx=t\) có 4 nghiệm
- Nếu \(-1< t< 0\) thì \(sinx=t\) có 3 nghiệm
- Nếu \(t=0\) thì \(sinx=t\) có 3 nghiệm
- Nếu \(t=1\) thì \(sinx=t\) có 2 nghiệm
- Nếu \(t=-1\) thì \(sinx=t\) có 1 nghiệm
Do đó pt đã cho có 5 nghiệm pb trong khoảng đã cho khi:
\(2t^2-\left(5m+1\right)t+2m^2+2m=0\) có 2 nghiệm pb thỏa mãn:
- TH1: \(\left\{{}\begin{matrix}t_1=-1\\0< t_2< 1\end{matrix}\right.\)
- TH2: \(\left\{{}\begin{matrix}-1< 0< t_1\\t_2=1\end{matrix}\right.\)
- TH3: \(\left\{{}\begin{matrix}t_1=0\\t_2=1\end{matrix}\right.\)
Về cơ bản, chỉ cần thay 1 nghiệm bằng 0 hoặc 1 rồi kiểm tra nghiệm còn lại có thỏa hay ko là được
Ptrinh \(\left(2cos2x-1\right)\left(3cosx+1\right)=0\) có bao nhiêu nghiệm thuộc khoảng \(\left(-\frac{\pi}{4};\frac{\pi}{2}\right)\)
Với \(x\in\left(-\frac{\pi}{4};\frac{\pi}{2}\right)\Rightarrow cosx>0\Rightarrow3cosx+1>0\)
Do đó pt tương đương:
\(2cos2x-1=0\Rightarrow cos2x=\frac{1}{2}\)
\(\Rightarrow\left[{}\begin{matrix}2x=\frac{\pi}{3}+k2\pi\\2x=-\frac{\pi}{3}+k2\pi\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+k\pi\\x=-\frac{\pi}{6}+k\pi\end{matrix}\right.\)
Pt có 2 nghiệm thuộc khoảng đã cho là \(x=\left\{-\frac{\pi}{6};\frac{\pi}{6}\right\}\)
1) tìm m để phương trình 2sinx+mcosx=1-m có nghiệm x thuộc \(\left[-\frac{\pi}{2};\frac{\pi}{2}\right]\)
2) tìm nghiệm của phương trình : \(sinx^24x+3.sin4x.cos4x-4.cos^24x=0\) khoảng \(\left(0;\frac{\pi}{2}\right)\)
3) tìm tất cả các nghiệm của phương trình cos5x.cosx= cos4x.cos2x+ \(3cos^2x+1\) thuộc khoảng \(\left(-\pi;\pi\right)\)
4) tìm tất cả các nghiệm trong khoảng (\(\frac{2\pi}{5};\frac{6\pi}{7}\)) của phương trình: \(\sqrt{3}sin7x-cos7x=\sqrt{2}\)
Tìm tất cả giá trị của tham số m để phương trình \(\left(sinx-2m+1\right)\left(2cosx-1\right)=0\)
a) Có 2 nghiệm thuộc \([-\dfrac{\pi}{2};\dfrac{5\pi}{6}]\)
b) Có 3 nghiệm thuộc \([-\dfrac{\pi}{2};\dfrac{5\pi}{6}]\)