3x+2 phần x-1 bằng 3
3x+2 phần x-1 bằng 3
\(\dfrac{3x+2}{x-1}=3\left(x\ne1\right)\)
suy ra
`3x+2=3(x-1)`
`<=>3x+2=3x-3`
`<=> 3x-3x=-3-2`
`<=> 0x=-5` (vô lí vì 0x=0 với mọi x)
\(\dfrac{3x+2}{x-1}=3\) (ĐK: x ≠ 1)
\(\Leftrightarrow3x+2=3\left(x-1\right)\)
\(\Leftrightarrow3x+2=3x-3\)
\(\Leftrightarrow3x-3x=-3-2\)
\(\Leftrightarrow0x=-5\) (Vô lí)
Vậy \(S=\varnothing\).
\(\dfrac{3x+2}{x-1}=3\) \(\left(dkxd:x\ne1\right)\)
\(\Leftrightarrow3x+2=3\left(x-1\right)\)
\(\Leftrightarrow3x+2=3x-3\)
\(\Leftrightarrow3x-3x=-3-2\)
\(\Leftrightarrow0=-5\left(VL\right)\)
Vậy \(S=\varnothing\)
3 phần x+5 bằng 4 phần x-2
\(\dfrac{3}{x+5}=\dfrac{4}{x-2}\left(x\ne-5;x\ne2\right)\)
suy ra
`3(x-2)=4(x+5)`
`<=>3x-6=4x+20`
`<=> 3x-4x=20+6`
`<=> -x=26`
`<=> x=-26(tm)`
\(\dfrac{3}{x+5}=\dfrac{4}{x-2}\left(ĐKXĐ:x\ne-5;x\ne2\right)\)
\(\Leftrightarrow3\left(x-2\right)=4\left(x+5\right)\)
\(\Leftrightarrow3x-6=4x+20\)
\(\Leftrightarrow3x-4x=20+6\)
\(\Leftrightarrow-x=26\)
\(\Leftrightarrow x=-26\left(tm\right)\)
X-2 phần x+1 bằng 2
`(x-2)/(x+1)=2` ĐK `x≠-1`
`<=> (x-2)/(x+1) = (2(x+1))/(x+1)`
`=>x-2 = 2(x+1)`
`<=>x-2=2x+2`
`<=>x-2x=2+2`
`<=> -x=4`
`<=>x=-4(TM)`
\(\dfrac{x-2}{x+1}=2\left(x\ne-1\right)\)
suy ra
`x-2=2(x+1)`
`<=>x-2=2x+2`
`<=> x-2x=2+2`
`<=> -x=4`
`<=> x=-4(tm)`
a: x^2+2x+3=(x+1)^2+2>0
x^2-x+1=(x-1/2)^2+3/4>0
=>PTVN
b: =>x(x-2)+4(x+2)=4
=>x^2-2x+4x+8=4
=>x^2+2x+4=0
=>(x+1)^2+3=0(loại)
\(a,\dfrac{2x-1}{x+2}=1-\dfrac{x}{x+2}\left(dkxd:x\ne-2\right)\)
\(\Leftrightarrow2x-1-x-2+x=0\)
\(\Leftrightarrow2x=3\)
\(\Leftrightarrow x=\dfrac{3}{2}\left(n\right)\)
\(b,\dfrac{x^2}{x+2}=x-\dfrac{3-x}{x+2}\left(dkxd:x\ne-2\right)\)
\(\Leftrightarrow x^2-x\left(x+2\right)+3-x=0\)
\(\Leftrightarrow x^2-x^2-2x+3-x=0\)
\(\Leftrightarrow-3x=-3\)
\(\Leftrightarrow x=1\left(n\right)\)
a)
\(\dfrac{2x-1}{x+2}=1-\dfrac{x}{x+2}\left(x\ne-2\right)\)
suy ra:
`2x-1=x+2-x`
`<=> 2x-x+x=2+1`
`<=> 2x=3`
`<=> x=3/2 (tm)`
b)
\(\dfrac{x}{x+2}=x-\dfrac{3-x}{x+2}\left(x\ne-2\right)\)
suy ra:
`x=x^2 +2x-3+x`
`<=> x^2 +2x-x+x-3=0`
`<=> x^2 +2x-3=0`
`<=> x^2 +3x-x-3=0`
`<=> x(x+3)-(x+3)=0`
`<=> (x+3)(x-1)=0`
\(< =>\left[{}\begin{matrix}x+3=0\\x-1=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=-3\left(tm\right)\\x=1\left(tm\right)\end{matrix}\right.\)
a: =>2x-1=x+2-x
=>2x-1=2
=>2x=3
=>x=3/2
b: =>x^2=x(x+2)-3+x
=>x^2=x^2+2x-3+x
=>3x-3=0
=>x=1
a: =>10(x-2)=x^2-4+x+2
=>x^2+x-2=10x-20
=>x^2-9x+18=0
=>(x-3)(x-6)=0
=>x=3 hoặc x=6
b: \(\Leftrightarrow\dfrac{\left(x+2\right)\cdot\left(x^2-2x+4\right)+\left(x-2\right)\left(x^2+2x+4\right)}{\left(x^2+2x+4\right)\left(x^2-2x+4\right)}=\dfrac{32}{x\left(x^2+2x+4\right)\left(x^2-2x+4\right)}\)
\(\Leftrightarrow2x^3\cdot x=32\)
=>2x^4=32
=>x=2 hoặc x=-2
a) ĐKXĐ: \(x\ne-2\)
\(x\ne2\)
\(\dfrac{10\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=\dfrac{\left(x+2\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}+\dfrac{x+2}{\left(x+2\right)\left(x-2\right)}\)
Suy ra: \(10x-20=x^2-2x+2x-4+x+2\)
<=> \(10x-20-x^2+2x-2x+4-x-2=0\)
<=> \(-x^2+9x-18=0\)
<=> \(0=x^2-9x+18\)
<=> \(0=\left(x-9\right)^2\)
<=> \(x-9=0\)
<=> \(x=9\)
Vậy \(S=\left\{9\right\}\)
Giải pt
Giải pt chứa ẩn ở mẫu(làm J,k,l nha)
j: \(\Leftrightarrow\left(x-1\right)\left(x-2\right)-x\left(x+2\right)=-5x+2\)
=>x^2-3x+2-x^2-2x=-5x+2
=>-5x+2=-5x+2
=>0x=0(luôn đúng)
k: =>(x-2)^2-3(x+2)=2x-22
=>x^2-4x+4-3x-6=2x-22
=>x^2-7x-2-2x+22=0
=>x^2-9x+20=0
=>x=4 hoặc x=5
9 phần x+3 = 8phần x-1
\(\dfrac{9}{x+3}=\dfrac{8}{x-1}\) (ĐK: x ≠ 1;-3)
\(\Leftrightarrow9\left(x-1\right)=8\left(x+3\right)\)
\(\Leftrightarrow9x-9=8x+24\)
\(\Leftrightarrow9x-8x=24+9\)
\(\Leftrightarrow x=33\) (TMĐK)
5x-2 phần x+1 =4
\(\dfrac{5x-2}{x+1}=4\) ĐK : \(x\ne-1\)
\(\Leftrightarrow\dfrac{5x-2}{x+1}=\dfrac{4\left(x+1\right)}{x+1}\)
`=>5x-2=4(x+1)`
`<=> 5x-2=4x+4`
`<=>5x-4x=4+2`
`<=>x=6(TM)`