Bài 1: Một số hệ thức về cạnh và đường cao trong tam giác vuông

H24
Xem chi tiết
NT
10 tháng 9 2023 lúc 12:55

1: Xét ΔABC vuông tại A có AH là đường cao

nên AB^2=BH*BC

=>AB=căn 3,6*10=6(cm)

ΔAHB vuông tại H

=>AH^2+HB^2=AB^2

=>HB^2=6^2-3,6^2=4,8^2

=>HB=4,8(cm)

b: Xét ΔMAB có

BE,AH là đường cao

BE cắt AH tại D

=>D là trực tâm

=>MD vuông góc AB

=>MD//AC

=>góc HMD=góc HCA

ΔHDM vuông tại H

=>HD=DM*sinDMH

=DM*sinC

 

Bình luận (0)
NL
Xem chi tiết
NT
9 tháng 9 2023 lúc 17:52

ΔABC vuông tại A

=>AB^2+AC^2=BC^2

=>BC^2=5^2+12^2=169

=>BC=13

Xét ΔABC vuông tại A có AH là đường cao

nên AH*BC=AB*AC; AB^2=BH*BC; AC^2=CH*CB

=>AH=5*12/13=60/13; BH=5^2/13=25/13; CH=12^2/13=144/13

Bình luận (0)
AH
9 tháng 9 2023 lúc 19:10

Lời giải:
Áp dụng hệ thức lượng trong tam giác vuông ta có:
$\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{5^2}+\frac{1}{12^2}=\frac{169}{3600}$

$\Rightarrow AH=\frac{60}{13}$ (cm) 

Áp dụng định lý Pitago:

$BH=\sqrt{AB^2-AH^2}=\sqrt{5^2-(\frac{60}{13})^2}=\frac{25}{13}$ (cm) 

$CH=\sqrt{AC^2-AH^2}=\sqrt{12^2-(\frac{60}{13})^2}=\frac{144}{13}$ (cm) 

Bình luận (0)
AH
9 tháng 9 2023 lúc 19:10

Hình vẽ:

Bình luận (0)
NN
Xem chi tiết
H9
27 tháng 8 2023 lúc 13:30

     

Xét ta có:

\(EF^2=7,5^2=56,25\left(cm\right)\) (1) 

Mà: \(DF^2+DE^2=4,5^2+6^2=56,25\left(cm\right)\) (2)

Từ (1) và (2) ta có:

\(EF^2=DE^2+DF^2\)

\(\Rightarrow\Delta DEF\) vuông tại D có đường cao DK

a) Áp dụng hệ thức hai cạnh góc vuông và đường cao ta có:

\(\dfrac{1}{DK^2}=\dfrac{1}{DE^2}+\dfrac{1}{DF^2}\)

\(\Rightarrow DK^2=\dfrac{DE^2DF^2}{DF^2+DF^2}\Rightarrow DK=\sqrt{\dfrac{DE^2DF^2}{DF^2+DE^2}}\)

\(\Rightarrow DK=\sqrt{\dfrac{4,5^2\cdot6^2}{4,5^2+6^2}}=3,6\left(cm\right)\)

b) Áp dụng hệ thức hình chiếu và cạnh góc vuông ta có:

\(\left\{{}\begin{matrix}DE^2=EF\cdot EK\\DF=EF\cdot FK\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}EK=\dfrac{DE^2}{EF}\\FK=\dfrac{DF^2}{EF}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}EK=\dfrac{6^2}{7,5}=4,8\left(cm\right)\\FK=\dfrac{4,5^2}{7,5}=2,7\left(cm\right)\end{matrix}\right.\)

Bình luận (0)
NT
27 tháng 8 2023 lúc 12:59

a: Xét ΔDEF có EF^2=DE^2+DF^2

nên ΔDEF vuông tại D

Xét ΔDEF vuông tại D có DK là đường cao

nên DK*FE=DE*DF
=>DE*7,5=27

=>DE=3,6cm

b: ΔDEF vuông tại D có DK là đường cao

nên EK*EF=ED^2

=>EK=6^2/7,5=4,8cm

FK=7,5-4,8=2,7cm

Bình luận (2)
HN
Xem chi tiết
HL
Xem chi tiết
NT
22 tháng 8 2023 lúc 20:45

ΔAHB vuông tại H có HM là đường cao

nên AM*AB=AH^2

ΔAHC vuông tại H có HN là đường cao

nên AN*AC=AH^2

=>AM*AB=AN*AC

Bình luận (0)
HL
Xem chi tiết
NT
22 tháng 8 2023 lúc 22:24

3:

ΔAHB vuông tại H có HM là đường cao

nên AM*AB=AH^2

ΔAHC vuông tại H có HN là đường cao

nên AN*AC=AH^2

=>AM*AB=AN*AC

Bình luận (0)
HL
Xem chi tiết
AH
21 tháng 8 2023 lúc 14:23

Lời giải:

Áp dụng định lý Pitago:

$BC=\sqrt{AB^2+AC^2}=\sqrt{3^2+4^2}=5$ (cm)

Áp dụng hệ thức lượng trong tam giác vuông: 

$BH=\frac{AB^2}{BC}=\frac{3^2}{5}=\frac{9}{5}=1,8$ (cm) 

$CH=BC-BH=5-1,8=3,2$ (cm)

$\frac{BD}{CD}=\frac{AB}{AC}=\frac{3}{4}$

$\Rightarrow \frac{BD}{BD+CD}=\frac{3}{7}$

Hay $\frac{BD}{BC}=\frac{3}{7}\Rightarrow BD=\frac{3}{7}.BC=\frac{3}{7}.5=\frac{15}{7}$ (cm)

$CD=BC-BD=5-\frac{15}{7}=\frac{20}{7}$ (cm)

$HD=BD-BH=\frac{15}{7}-1,8=\frac{12}{35}$ (cm)

Bình luận (3)
AH
21 tháng 8 2023 lúc 14:26

Hình vẽ:

Bình luận (0)
HL
Xem chi tiết
NT
21 tháng 8 2023 lúc 22:56

ΔABC vuông tại A

=>AB^2+AC^2=BC^2

=>BC=căn 3^2+4^2=5cm

ΔABC vuông tại A có AH là đường cao

nên AH*BC=AB*AC; BH*BC=BA^2; CH*CB=CA^2

=>AH=3*4/5=2,4cm; BH=3^2/5=1,8cm; CH=4^2/5=3,2cm

ΔABC có AD là phân giác

nên BD/AB=CD/AC

=>BD/3=CD/4=(BD+CD)/(3+4)=5/7

=>BD=15/7cm; CD=20/7cm

Bình luận (0)
NL
Xem chi tiết
H9
13 tháng 8 2023 lúc 8:31

Xét ΔABC vuông tại A áp dụng định lý Py-ta-go ta có:

\(BC^2=AB^2+AC^2\)

\(\Rightarrow BC^2=3^2+4^2\)

\(\Rightarrow BC^2=9+16\)

\(\Rightarrow BC^2=25\)

\(\Rightarrow BC=\sqrt{25}\)

\(\Rightarrow BC=5\left(cm\right)\)

Bình luận (0)
NT
Xem chi tiết
H24
9 tháng 8 2023 lúc 15:51

Áp dụng hệ thức trong tam giác vuông có:

\(MP^2=PK.PN\Leftrightarrow PN=12,5\left(cm\right)\)

\(MN=\sqrt{PN^2-MP^2}=7,5cm\)

\(MN^2=NK.NP\Leftrightarrow NK=4,5\left(cm\right)\)

\(MK^2=KN.KP=4,5.8=36\Leftrightarrow MK=6\left(cm\right)\)

Vậy...

Bình luận (0)
NT
9 tháng 8 2023 lúc 15:53

NP=MP^2/PN=10^2/8=12,5cm

MK=căn 10^2-8^2=6cm

NK=6^2/8=4,5cm

MN=căn 12,5^2-10^2=7,5cm

Bình luận (0)
H24
9 tháng 8 2023 lúc 16:16

`@`Phamdanhv.

ảnh mình không tải được , bạn vào link này nhé

`=>` 

blob:https://www.facebook.com/87ade4e1-6c0b-45ee-b42f-df163ba3224e

Bình luận (0)