Bài 1: Một số hệ thức về cạnh và đường cao trong tam giác vuông

H24

(2,5 điểm) Cho triangle ABC vuông tại A, đường cao AH, đường trung tuyến. AM 1 ) Biết BC = 10 cm, BH = 3.6cm Tỉnh độ dài đoạn thẳng AB, AH và số đo góc HAM ( làm ròn số đo góc đến phút) b) từ B kẻ BE vuông góc AM (E thuộc AM ) BE cắt cắt AH tại D. Chứng minh rằng DM II AC HD = DM * sin C Lấy điểm K trên cạnh BE sao cho hat AKM = 90 deg Chứng minh AE. ME = BE .DE VÀ S² AMK =S² AMB. S AMD

NT
10 tháng 9 2023 lúc 12:55

1: Xét ΔABC vuông tại A có AH là đường cao

nên AB^2=BH*BC

=>AB=căn 3,6*10=6(cm)

ΔAHB vuông tại H

=>AH^2+HB^2=AB^2

=>HB^2=6^2-3,6^2=4,8^2

=>HB=4,8(cm)

b: Xét ΔMAB có

BE,AH là đường cao

BE cắt AH tại D

=>D là trực tâm

=>MD vuông góc AB

=>MD//AC

=>góc HMD=góc HCA

ΔHDM vuông tại H

=>HD=DM*sinDMH

=DM*sinC

 

Bình luận (0)

Các câu hỏi tương tự
DQ
Xem chi tiết
TT
Xem chi tiết
CT
Xem chi tiết
BN
Xem chi tiết
DT
Xem chi tiết
LD
Xem chi tiết
H24
Xem chi tiết
EN
Xem chi tiết
PN
Xem chi tiết