Cách 2:
\(A=x^4-12x^3+12x^2-12x+111\)
\(=x^4-11x^3-x^3+11x^2+x^2-11x-x+11+100\)
\(=x^3\left(x-11\right)-x^2\left(x-11\right)+x\left(x-11\right)-\left(x-11\right)+100\)
\(=\left(x^3-x^2+x-1\right)\left(x-11\right)+100\)
Thay x = 11
\(\Rightarrow A=100\)
Vậy...
Ta có: 12 = 1+ 11 => 12 = x + 1 (1)
Thay (1) vào đề bài:
\(x^4-\left(x+1\right).x^3+\left(x+1\right).x^2-\left(x+1\right).x+111\)
\(=x^4-x^4-x^3+x^3+x^2-x^2-x+111\)
\(=-x+111\)
Lại có: x = 11
=> \(-11+111=100.\)