Bài giải:
a) (a + b + c)2 = [(a + b) + c]2 = (a + b)2 + 2(a + b)c + c2
= a2+ 2ab + b2 + 2ac + 2bc + c2
= a2 + b2 + c2 + 2ab + 2bc + 2ac.
b) (a + b – c)2 = [(a + b) – c]2 = (a + b)2 - 2(a + b)c + c2
= a2 + 2ab + b2 - 2ac - 2bc + c2
= a2 + b2 + c2 + 2ab - 2bc - 2ac.
c) (a – b –c)2 = [(a – b) – c]2 = (a – b)2 – 2(a – b)c + c2
= a2 – 2ab + b2 – 2ac + 2bc + c2
= a2 + b2 + c2 – 2ab + 2bc – 2ac.
Đúng 0
Bình luận (0)
a) \(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2ac+2bc\)
b) \(\left(a+b-c\right)^2=a^2+b^2+c^2+2ab-2ac-2bc\)
c) \(\left(a-b-c\right)^2=a^2+b^2+c^2-2ab-2ac+2bc\)
Đúng 0
Bình luận (0)