\(x^4-17x^2=0\)
\(\Rightarrow x^2.\left(x^2-17\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x^2=0\\x^2-17=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x^2=17\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=\pm\sqrt{17}\end{matrix}\right.\)
Vậy .........................
\(x^4-17x^2=0\)
\(\Leftrightarrow x^2\left(x^2-17\right)=0\)
\(\Leftrightarrow x^2=17\)
\(\Leftrightarrow x=\pm\sqrt{17}\)
x^4-17x^2=0
x^2 . (x^2-17) = 0
=> x^2 = 0 hoặc x^2-17=0
+) x = 0 +) x^2 = 17
x = \(\sqrt{17}\)
Vậy x \(\in\) {0;\(\sqrt{17}\)}