Bài 3: Những hằng đẳng thức đáng nhớ

RM

Tìm x

a)\(27x^3+27x^2+9x+1=64\) b)\(\left(x-2\right)^3-x^2\left(x-6\right)=4\) c)\(\left(x-1\right)^3-\left(x+3\right)\left(x^2-3x+9\right)+3\left(x-2\right)\left(x+2\right)=2\)
TH
29 tháng 8 2018 lúc 13:45

a) \(27x^3+27x^2+9x+1=64\)

\(\Rightarrow27x^3+27x^2+9x-63=0\)

\(\Rightarrow27x^3-27x^2+54x^2-54x+63x-63=0\)

\(\Rightarrow27x^2\left(x-1\right)+54x\left(x-1\right)+63\left(x-1\right)=0\)

\(\Rightarrow\left(x-1\right)\left(27x^2+54x+63\right)=0\)

\(\Rightarrow\left(x-1\right).9\left(3x^2+6x+7\right)=0\)

\(\Rightarrow\left(x-1\right)\left(3x^2+6x+7\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-1=0\\3x^2+6x+7=0\end{matrix}\right.\)

Mà ta có:

\(3x^2+6x+7\)

\(=3\left(x^2+2x+\dfrac{7}{3}\right)\)

\(=3\left(x^2+2x+1-1+\dfrac{7}{3}\right)\)

\(=3\left(x+1\right)^2+4\)

\(3\left(x+1\right)^2\ge0\) với mọi x

\(\Rightarrow3\left(x+1\right)^2+4\ge4\)

\(\Rightarrow3x^2+6x+7\) vô nghiệm

\(\Rightarrow x-1=0\)

\(\Rightarrow x=1\)

b) \(\left(x-2\right)^3-x^2\left(x-6\right)=4\)

\(\Rightarrow x^3-6x^2+12x-8-x^3+6x^2=4\)

\(\Rightarrow12x-8=4\)

\(\Rightarrow12x=12\)

\(\Rightarrow x=1\)

c) \(\left(x-1\right)^3-\left(x+3\right)\left(x^2-3x+9\right)+3\left(x-2\right)\left(x+2\right)=2\)

\(\Rightarrow x^3-3x^2+3x-1-\left(x^3+3^3\right)+3\left(x^2-2^2\right)=2\)

\(\Rightarrow x^3-3x^2+3x-1-x^3-9+3x^2-12=2\)

\(\Rightarrow3x-22=2\)

\(\Rightarrow3x=24\)

\(\Rightarrow x=8\)

Bình luận (0)

Các câu hỏi tương tự
RM
Xem chi tiết
DV
Xem chi tiết
TH
Xem chi tiết
HL
Xem chi tiết
PT
Xem chi tiết
VN
Xem chi tiết
DN
Xem chi tiết
LN
Xem chi tiết
NA
Xem chi tiết