Bài 3: Những hằng đẳng thức đáng nhớ

TN

Tìm GTNN của:
A = 49x2 - 28x +25

B = 8x2 - 28x - 1

C = ( 2x2 +5)2 +10

D = 3x2 - 8x + 7

E = x4 - 2x2 + 12

F = 4x2 + 15x + 2

G = 8(a +2)3 - (2a + 1)3

H = (x - 1)( x + 5)( x2 + 4x + 5)

I = ( x6 + 6)2

H24
14 tháng 8 2018 lúc 14:23

\(A=49x^2-28x+25\)

\(A=\left(7x\right)^2-2.7x.2+4-4+25\)

\(A=\left(7x-2\right)^2+21\)

\(\left(7x-2\right)^2\ge0\) với mọi x

\(\Rightarrow\left(7x-2\right)^2+21\ge21\) với mọi x

\(\Rightarrow Amin=21\Leftrightarrow7x-2=0\)

\(\Rightarrow7x=2\)

\(\Rightarrow x=\dfrac{2}{7}\)

Vậy \(Amin=21\Leftrightarrow x=\dfrac{2}{7}\)

\(B=8x^2-28x-1\)

\(B=2\left(4x^2-14x-\dfrac{1}{2}\right)\)

\(B=2\left[\left(2x\right)^2-2.2x.\dfrac{7}{2}+\left(\dfrac{7}{2}\right)^2-\left(\dfrac{7}{2}\right)^2-\dfrac{1}{2}\right]\)

\(B=2\left[\left(2x\right)^2-2.2x.\dfrac{7}{2}+\left(\dfrac{7}{2}\right)^2-\dfrac{51}{4}\right]\)

\(B=2\left(2x-\dfrac{7}{2}\right)^2-\dfrac{51}{2}\)

\(2\left(2x-\dfrac{7}{2}\right)^2\ge0\) với mọi x

\(\Rightarrow2\left(2x-\dfrac{7}{2}\right)^2-\dfrac{51}{2}\ge-\dfrac{51}{2}\)

\(\Rightarrow Bmin=-\dfrac{51}{2}\Leftrightarrow2x-\dfrac{7}{2}=0\)

\(\Rightarrow2x=\dfrac{7}{2}\)

\(\Rightarrow x=\dfrac{7}{4}\)

Vậy \(Bmin=-\dfrac{51}{2}\Leftrightarrow x=\dfrac{7}{4}\)

\(C=\left(2x^2+5\right)^2+10\)

\(\left(2x^2+5\right)^2\ge0\) với mọi x

\(\Rightarrow\left(2x^2+5\right)^2+10\ge10\) với mọi x

\(\Rightarrow Cmin=10\Leftrightarrow2x^2+5=0\)

\(\Rightarrow2x^2=-5\)

\(\Rightarrow x^2=-\dfrac{5}{2}\)

\(\Rightarrow\) Không tồn tại x thỏa mãn

Vậy C không có giá trị nhỏ nhất

P/s: Câu c mình làm không có chắc nha, thấy nó sao sao ấy, không biết có sai đề không? bucminh

\(D=3x^2-8x+7\)

\(D=3\left(x^2-\dfrac{8}{3}x+\dfrac{7}{3}\right)\)

\(D=3\left(x^2-2.x.\dfrac{4}{3}+\dfrac{16}{9}-\dfrac{16}{9}+\dfrac{7}{3}\right)\)

\(D=3\left(x^2-2.x.\dfrac{4}{3}+\dfrac{16}{9}+\dfrac{5}{9}\right)\)

\(D=3\left(x-\dfrac{4}{3}\right)^2+\dfrac{5}{3}\)

\(3\left(x-\dfrac{4}{3}\right)^2\ge0\) với mọi x

\(\Rightarrow3\left(x-\dfrac{4}{3}\right)^2+\dfrac{5}{3}\ge\dfrac{5}{3}\)

\(\Rightarrow Dmin=\dfrac{5}{3}\Leftrightarrow x-\dfrac{4}{3}=0\)

\(\Rightarrow x=\dfrac{4}{3}\)

Vậy \(Dmin=\dfrac{5}{3}\Leftrightarrow x=\dfrac{4}{3}\)

\(E=x^4-2x^2+12\)

\(E=\left(x^2\right)^2-2x^2+1+11\)

\(E=\left(x^2-1\right)^2+11\)

\(\left(x^2-1\right)^2\ge0\) với mọi x

\(\Rightarrow\left(x^2-1\right)^2+11\ge11\) với mọi x

\(\Rightarrow Emin=11\Leftrightarrow x^2-1=0\)

\(\Rightarrow x^2=1\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

Vậy \(Emin=11\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

\(F=4x^2+15x+2\)

\(F=\left(2x\right)^2+2.2x.\dfrac{15}{4}+\left(\dfrac{15}{4}\right)^2-\left(\dfrac{15}{4}\right)^2+2\)

\(F=\left(2x+\dfrac{15}{4}\right)^2-\dfrac{225}{16}+\dfrac{32}{16}\)

\(F=\left(2x+\dfrac{15}{4}\right)^2-\dfrac{193}{16}\)

\(\left(2x+\dfrac{15}{4}\right)^2\ge0\) với mọi x

\(\Rightarrow\left(2x+\dfrac{15}{4}\right)^2-\dfrac{193}{16}\ge-\dfrac{193}{16}\)

\(\Rightarrow Fmin=-\dfrac{193}{16}\Leftrightarrow2x+\dfrac{15}{4}=0\)

\(\Rightarrow2x=-\dfrac{15}{4}\)

\(\Rightarrow x=-\dfrac{15}{4}.\dfrac{1}{2}\)

\(\Rightarrow x=-\dfrac{15}{8}\)

Vậy \(Fmin=-\dfrac{193}{16}\Leftrightarrow x=-\dfrac{15}{8}\)

\(H=\left(x-1\right)\left(x+5\right)\left(x^2+4x+5\right)\)

\(H=\left(x^2+4x-5\right)\left(x^2+4x+5\right)\)

\(H=\left(x^2+4x\right)^2-5^2\)

\(H=\left(x^2+4x\right)^2-25\)

\(\left(x^2+4x\right)^2\ge0\)

\(\Rightarrow\left(x^2+4x\right)^2-25\ge-25\) với mọi x

\(\Rightarrow Hmin=-25\Leftrightarrow x^2+4x=0\)

\(\Rightarrow x\left(x+4\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=-4\end{matrix}\right.\)

Vậy \(Hmin=-25\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-4\end{matrix}\right.\)

\(I=\left(x^6+6\right)^2\)

\(\left(x^6+6\right)^2\ge0\)

\(\Rightarrow Imin=0\Leftrightarrow x^6+6=0\)

\(\Rightarrow\left(x^3\right)^2=-6\)

\(\Rightarrow\) Không tồn tại x

Vậy I không có giá trị nhỏ nhất

Bình luận (3)
DX
14 tháng 8 2018 lúc 14:43

\(A=49x^2-28x+25=\left(49x^2-28x+1\right)+24=\left(7x-1\right)^2+24\ge24\)

Vậy GTNN của A là 24 khi x = \(\dfrac{1}{7}\)

\(B=8x^2-28x-1=8\left(x^2-\dfrac{7}{2}x+\dfrac{49}{16}\right)-\dfrac{51}{2}=8\left(x-\dfrac{7}{4}\right)^2-\dfrac{51}{2}\ge-\dfrac{51}{2}\)

Vậy GTNN của B là \(-\dfrac{51}{2}\) khi x = \(\dfrac{7}{4}\)

\(C=\left(2x^2+5\right)^2+10=4x^4+20x^2+35\ge35\)

Vậy GTNN của C là 35 khi x = 0

\(D=3x^2-8x+7=3\left(x^2-\dfrac{8}{3}x+\dfrac{16}{9}\right)+\dfrac{5}{3}=3\left(x-\dfrac{4}{3}\right)^2+\dfrac{5}{3}\ge\dfrac{5}{3}\)

Vậy GTNN của D là \(\dfrac{5}{3}\) khi x = \(\dfrac{4}{3}\)

\(E=x^4-2x^2+12=\left(x^4-2x^2+1\right)+11=\left(x^2-1\right)^2+11\ge11\)

Vậy GTNN của E là 11 khi x = 1 hoặc x = -1

\(F=4x^2+15x+2=\left(4x^2+15x+\dfrac{225}{16}\right)-\dfrac{193}{16}=\left(2x+\dfrac{15}{4}\right)^2-\dfrac{193}{16}\ge-\dfrac{193}{16}\)

Vậy GTNN của F là \(-\dfrac{193}{16}\) khi x = \(-\dfrac{15}{8}\)

\(G=8\left(a+2\right)^3-\left(2a+1\right)^3\)

\(G=36a^2+90a+63\)

\(G=9\left(4a^2+10a+7\right)\)

\(G=9\left(4a^2+10a+\dfrac{25}{4}\right)+\dfrac{27}{4}\)

\(G=9\left(2a+\dfrac{5}{2}\right)^2+\dfrac{27}{4}\ge\dfrac{27}{4}\)

Vậy GTNN của G là \(\dfrac{27}{4}\) khi x = \(-\dfrac{5}{4}\)

\(H=\left(x-1\right)\left(x+5\right)\left(x^2+4x+5\right)\)

\(H=x^4+8x^3+16x^2-25\)

\(H=\left(x^2+4x\right)^2-25\ge-25\)

Vậy GTNN của H là -25 khi x = -4 hoặc x = 0

\(I=\left(x^6+6\right)^2=x^{12}+12x^6+36\ge36\)

Vậy GTNN của I là 36 khi x = 0

Bình luận (2)

Các câu hỏi tương tự
VD
Xem chi tiết
TT
Xem chi tiết
NM
Xem chi tiết
VH
Xem chi tiết
NY
Xem chi tiết
NH
Xem chi tiết
DT
Xem chi tiết
DP
Xem chi tiết
YN
Xem chi tiết