\(A=x^2-6x+12=\left(x^2-6x+9\right)+3=\left(x-3\right)^2+3\)
Có: \(\left(x-3\right)^2\ge0\Rightarrow\left(x-3\right)^2+3\ge3\)
Dấu ''='' xảy ra khi x = 3
Vậy MinA = 3 ⇔ x = 3
--
\(B=4x^2+4x+4=\left(4x^2+4x+1\right)+3=\left(2x+1\right)^2+3\)
Vì: \(\left(2x+1\right)^2\ge0\Rightarrow\left(2x+1\right)^2+3\ge3\)
Dấu ''='' xảy ra khi 2x + 1 = 0 \(\Leftrightarrow x=-\dfrac{1}{2}\)
Vậy MinB = 3 ⇔ x = \(-\dfrac{1}{2}\)