Bài 4: Những hằng đẳng thức đáng nhớ (Tiếp)

LY

Tìm GTLN của:

\(2x-2x^2-5\)

DN
21 tháng 8 2018 lúc 10:05

Ta có:\(2x-2x^2-5=-\left(2x^2-2x+5\right)\)

\(=-\left[2\left(x^2-x+\dfrac{5}{2}\right)\right]\)

\(=-\left\{2\left[x^2-2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2-\dfrac{1}{4}+\dfrac{5}{2}\right]\right\}\)

\(=-\left\{2\left[\left(x-\dfrac{1}{2}\right)^2+\dfrac{9}{4}\right]\right\}\)

\(=-\left[2\left(x-\dfrac{1}{2}\right)^2+\dfrac{9}{2}\right]\)

\(=-2\left(x-\dfrac{1}{2}\right)^2-\dfrac{9}{2}\)

Do \(-2\left(x-\dfrac{1}{2}\right)^2\le0\) với \(\forall x\) (dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{1}{2}\) )

\(\Rightarrow-2\left(x-\dfrac{1}{2}\right)^2-\dfrac{9}{2}\le-\dfrac{9}{2}\) hay \(2x-2x^2-5\le-\dfrac{9}{2}\) (dấu ''='' xảy ra \(\Leftrightarrow x=\dfrac{1}{2}\))

Vậy giá trị lớn nhất của biểu thức \(2x-2x^2-5\)\(-\dfrac{9}{2}\) tại \(x=\dfrac{1}{2}\)

Bình luận (0)
LA
21 tháng 8 2018 lúc 8:15

A = 2x - 2x2 - 5

=> 2A = -4x2 + 4x - 10

=> 2A = -(4x2 - 4x + 10)

=> 2A = - [(2x)2 - 2.2x + 1] - 9

=> 2A = -(2x - 1)2 -9

Mà: -(2x - 1)2 \(\le\) 0 => -(2x - 1)2 - 9 \(\le\) -9

=> 2A \(\le\) -9

=> A \(\le\) -4,5

Đẳng thức xảy ra khi: -(2x - 1)2 = 0 <=> x = \(\dfrac{1}{2}\)

Bình luận (1)

Các câu hỏi tương tự
TH
Xem chi tiết
H24
Xem chi tiết
TC
Xem chi tiết
TC
Xem chi tiết
CG
Xem chi tiết
TB
Xem chi tiết
H24
Xem chi tiết
BT
Xem chi tiết