Bài 3: Những hằng đẳng thức đáng nhớ

LH

Tìm GTLN:

a) -x2 - 6 - 10

b) 12x - 4x2 + 3

c) 8x - 8x2 + 3

d) -x2 - 8x + 2018 - y2 + 4y

e) -4x4 - 12x2 + 11

f) x - \(\dfrac{x^2}{4}\)

g) x - \(\dfrac{9x^2}{25}\)

LG
16 tháng 9 2018 lúc 18:16

\(a,A=-x^2-6x-10=-\left(x^2+6x+9\right)-1=-\left(x+3\right)^2-1\le-1\)

Dấu = xảy ra ⇔ x +3 =0 ⇔ x = -3

\(Max_A=-1\text{ ⇔}x=-3\)

\(b,B=12x-4x^2+3=-\left(4x^2-12x+9\right)+12=-\left(2x-3\right)^2+12\le12\)

Dấu = xảy ra \(\Leftrightarrow2x-3=0\Leftrightarrow x=\dfrac{3}{2}\)

\(Max_B=12\text{ ⇔}x=\dfrac{3}{2}\)

\(c,8x-8x^2+3=-8\left(x^2-x+\dfrac{1}{4}\right)+5=-8\left(x-\dfrac{1}{2}\right)^2+5\le5\)

\(d,-x^2-8x+2018-y^2+4y\)

\(=-\left(x^2+8x+16\right)-\left(y^2-4y+4\right)+2038\le2038\)

\(e,-4x^4-12x^2+11=-\left(4x^4+12x^2+9\right)+20=-\left(2x^2+3\right)^2+20\le20\)

\(f,C=x-\dfrac{x^2}{4}\Rightarrow4C=4x-x^2\)\(=-\left(x^2-4x+4\right)+4=-\left(x-2\right)^2+4\)

\(\Rightarrow C=-\dfrac{\left(x-2\right)^2}{4}+1\le1\)

\(g,D=x-\dfrac{9x^2}{25}\Rightarrow25D=-\left(9x^2-25x\right)=-\left(9x^2-2.3x.\dfrac{25}{6}+\dfrac{625}{36}\right)+\dfrac{625}{36}=-\left(3x-\dfrac{25}{6}\right)^2+\dfrac{625}{36}\)

\(\Rightarrow D=\dfrac{-\left(3x-\dfrac{25}{6}\right)^2}{25}+\dfrac{25}{36}\le\dfrac{25}{36}\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
NT
Xem chi tiết
NM
Xem chi tiết
LD
Xem chi tiết
VH
Xem chi tiết
NT
Xem chi tiết
DN
Xem chi tiết
LH
Xem chi tiết
DC
Xem chi tiết