\(M=3x^2-7x=3\left(x^2-2.x.\frac{7}{6}+\left(\frac{7}{6}\right)^2-\left(\frac{7}{6}\right)^2\right)\)
\(=3\left(x-\frac{7}{6}\right)^2-\frac{49}{12}\ge-\frac{49}{12}\)
Đẳng thức xảy ra khi x = 7/6
N = \(\left(x^4-7x^2+6\right)=x^4-2.x^2.\frac{7}{2}+\left(\frac{7}{2}\right)^2-\left(\frac{7}{2}\right)^2+6\)
\(=\left(x^2-\frac{7}{2}\right)^2-\frac{25}{4}\ge-\frac{25}{4}\)
đẲng thức xảy ra khi \(x^2=\frac{7}{2}\Leftrightarrow x=\pm\sqrt{\frac{7}{2}}\)
Lời giải:
a, Ta có:
M = 3x2 - 7x = 3 . ( x2 - \(\frac{7}{3}\)x ) = 3 . [ x2 - 2.\(\frac{7}{6}\)x + \(\left(\frac{7}{6}\right)^2\) - \(\left(\frac{7}{6}\right)^2\)]
= 3 . [ \(\left(x-\frac{7}{6}\right)^2\) - \(\frac{49}{36}\)]
= 3.\(\left(x-\frac{7}{6}\right)^2\) - \(\frac{49}{12}\) ≥ - \(\frac{49}{12}\) . Vì: 3.\(\left(x-\frac{7}{6}\right)^2\) ≥ 0 ∀x => Mmin = - \(\frac{49}{12}\)
<=> 3.\(\left(x-\frac{7}{6}\right)^2\) = 0
<=> \(\left(x-\frac{7}{6}\right)^2\) = 0
<=> \(x-\frac{7}{6}\) = 0
<=> x = \(\frac{7}{6}\)
Vây: Mmin = -\(\frac{49}{12}\) tại x = \(\frac{7}{6}\).
b, Ta có:
N = x4 - 7x2 + 6 = [(x2)2 - 2 . \(\frac{7}{2}\) . x2 + \(\left(\frac{7}{2}\right)\)2 ] - [\(\left(\frac{7}{2}\right)\)2 - 6]
= ( x2 - \(\frac{7}{2}\))2 - \(\frac{25}{4}\) ≥ -\(\frac{25}{4}\) . Vì: ( x2 - \(\frac{7}{2}\))2 ≥ 0 ∀x => Nmin= -\(\frac{25}{4}\)
<=> ( x2 - \(\frac{7}{2}\))2 = 0
<=> x2 - \(\frac{7}{2}\) = 0
<=> x2 = \(\frac{7}{2}\)
<=> x = \(\sqrt{\frac{7}{2}}\)
Vây: Nmin = - \(\frac{25}{4}\) tại x = \(\sqrt{\frac{7}{2}}\)
Chúc bạn học tốt!Tick cho mình nhé!