Ta có:
3n2 - 2n + 1 = (3n + 1)(n - 1) + 2 (sắp phép chia dạng cột)
=> 3n2 - 2n + 1 chia hết cho (3n + 1) khi 3n + 1 € Ư(2) = {-2;-1;1;2}
<=> n = {-1; (-2/3) ; 0 ; 1/3}
Mà n € Z nên n = {-1;0}
Lời giải:
Ta có:
\(3n^2-2n+1=3n^2+n-3n-1+2\)
\(=n(3n+1)-(3n+1)+2=(n-1)(3n+1)+2\)
Để \(3n^2-2n+1\vdots 3n+1\)
\(\Leftrightarrow (n-1)(3n+1)+2\vdots 3n+1\)
\(\Leftrightarrow 2\vdots 3n+1\Rightarrow 3n+1\in \text{Ư}(2)\)
\(\Rightarrow 3n+1\in \left\{\pm 1;\pm 2\right\}\Rightarrow 3n\in \left\{-2; 0; -3; 1\right\}\)
\(\Rightarrow n\in \left\{0;-1\right\}\) do $n$ nguyên.
Vậy............