0<a<10;0<=b,c<10;a,b,c thuộc N
A= a+b+c
\(B=\overline{abc}\)
\(\left\{{}\begin{matrix}A⋮7\\B⋮7\end{matrix}\right.\)
Lời giải
B=100a+10b+c =(14.7a+7b)+(a+b+c)+a+2b
\(\left\{{}\begin{matrix}A⋮7\\B⋮7\end{matrix}\right.\)\(\Rightarrow C=\left(a+2b\right)⋮7\)
\(\left\{{}\begin{matrix}A⋮7\\C⋮7\end{matrix}\right.\)\(\Rightarrow\left(b-c\right)⋮7\)
=>
\(\left\{{}\begin{matrix}\\\left(b-c\right)⋮7\left(1\right)\\\left(a+2b\right)⋮7\left(2\right)\end{matrix}\right.\)
với a=1 =>\(\) b=3; c=3
với a=2=> b=6=> c=6
...
...