Bài 9: Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp

UM

Phân tích đa thức thành nhân tử 
b. 25-x2=14xy-49y2

c. x5+x4+1
Mọi người giúp mình với ạ

 

H9
11 tháng 7 2023 lúc 6:20

b) \(25-x^2+14xy-49y^2\)

\(=25-\left(x^2-14xy+49y^2\right)\)

\(=25-\left[x^2-2\cdot7y\cdot x+\left(7y\right)^2\right]\)

\(=25-\left(x-7y\right)^2\)

\(=5^2-\left(x-7y\right)^2\)

\(=\left[5-\left(x-7y\right)\right]\left[5+\left(x-7y\right)\right]\)

\(=\left(5-x+7y\right)\left(5+x-7y\right)\)

c) \(x^5+x^4+1\)

\(=x^5+x^4+1+x^3-x^3\)

\(=\left(x^5+x^4+x^3\right)+\left(1-x^3\right)\)

\(=x^3\left(x^2+x+1\right)+\left(1-x\right)\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left[x^3+\left(1-x\right)\right]\)

\(=\left(x^2+x+1\right)\left(x^3+1-x\right)\)

Bình luận (0)
NT
10 tháng 7 2023 lúc 21:55

b: 25-x^2+14xy-49y^2

=25-(x-7y)^2

=(5-x+7y)(5+x-7y)

c: =x^5+x^4+x^3+1-x^3

=x^3(x^2+x+1)+(1-x)(x^2+x+1)

=(x^2+x+1)(x^3+1-x)

Bình luận (0)

Các câu hỏi tương tự
NH
Xem chi tiết
MS
Xem chi tiết
FH
Xem chi tiết
TT
Xem chi tiết
LM
Xem chi tiết
TN
Xem chi tiết
KN
Xem chi tiết
TM
Xem chi tiết
BB
Xem chi tiết