Bài 7: Phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức

H24

Phân tích đa thức thành nhân tử:

a) A = (a - b)3 + (b - c)3 + (c - a)3.

b) B = (a + b - 2c)3 + (b + c - 2a)3 + (c + a - 2b)3.

H24
19 tháng 2 2020 lúc 9:45

a) A = (a - b)3 + (b - c)3 + (c - a)3

Đặt : a - b = x ; b - c = y; c - a = z thì x + y + z = 0

Do đó: \(x^3+y^3+z^3=3xyz\)

Vậy A = \(3\left(a-b\right)\left(b-c\right)\left(c-a\right)\)

b) B = (a + b - 2c)3 + (b + c - 2a)3 + (c + a - 2b)3

Đặt : a + b - 2c = x ; b + c - 2a = y ; c + a - 2b = z

Thì x + y + z = 0 do đó \(x^3+y^3+z^3=3xyz\)

Vậy B = 3(a + b - 2c)(b + c - 2a)(c + a - 2b)

banhquabanhbanhquabanh

Bình luận (0)
 Khách vãng lai đã xóa
NT
19 tháng 2 2020 lúc 10:02

a) Ta có: \(A=\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3\)

\(=a^3-3a^2b+3ab^2-b^3+b^3-3b^2c+3bc^2-c^3+c^3-3c^2a+3ca^2-a^3\)

\(=-3\left(a^2b+ac^2-ab^2-bc^2+b^2c-a^2c\right)\)

\(=3\left[\left(a^2b-ab^2\right)+\left(ac^2-bc^2\right)-\left(a^2c-b^2c\right)\right]\)

\(=3\left[ab\left(a-b\right)+c^2\left(a-b\right)-c\left(a^2-b^2\right)\right]\)

\(=3\left[ab\left(a-b\right)+c^2\left(a-b\right)-c\left(a-b\right)\left(a+b\right)\right]\)

\(=3\left(a-b\right)\left[ab+c^2-c\left(a+b\right)\right]\)

\(=3\left(a-b\right)\left(ab+c^2-ca-cb\right)\)

\(=3\left(a-b\right)\left[\left(ab-ac\right)-\left(bc-c^2\right)\right]\)

\(=3\left(a-b\right)\left[a\left(b-c\right)-c\left(b-c\right)\right]\)

\(=3\left(a-b\right)\left(b-c\right)\left(a-c\right)\)

b) Phân tích đa thức thành nhân tử,(a + b - 2c)^3 + (b + c - 2a)^3 + (c + a - 2b)^3,Toán học Lớp 8,bài tập Toán học Lớp 8,giải bài tập Toán học Lớp 8,Toán học,Lớp 8

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
KN
Xem chi tiết
MA
Xem chi tiết
NT
Xem chi tiết
H24
Xem chi tiết
SK
Xem chi tiết
ES
Xem chi tiết
TH
Xem chi tiết
DV
Xem chi tiết
DV
Xem chi tiết