Bài 9: Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp

AP

Phân tích đa thức sau thành nhân tử:

a) \(a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)\)

b) \(a^3\left(b-c\right)+b^3\left(c-a\right)+c^3\left(a-b\right)\)

c) \(a^4\left(b-c\right)+b^4\left(c-a\right)+c^4\left(a-b\right)\)

d) \(\left(a+b\right)\left(a^2-b^2\right)+\left(b+c\right)\left(b^2-c^2\right)+\left(c+a\right)\left(c^2-a^2\right)\)

e) \(a.\left(b+c\right)^2\left(b-c\right)+b\left(c+a\right)^2\left(c-a\right)+c^2\left(a+b\right)^2.\left(a-b\right)\)

NT
15 tháng 8 2018 lúc 9:11

Bài cuối hơi khó nhìn, bạn thông cảm nhé! ^^

undefinedundefined

Bình luận (0)
H24
15 tháng 8 2018 lúc 9:50

a) \(a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)\)

\(=a^2b-a^2c+c^2a-c^2b+b^2\left(c-a\right)\)

\(=\left(a^2b-c^2b\right)-\left(a^2c-c^2a\right)-b^2\left(a-c\right)\)

\(=b\left(a^2-c^2\right)-ac\left(a-c\right)-b^2\left(a-c\right)\)

\(=b\left(a-c\right)\left(a+c\right)-ac\left(a-c\right)-b^2\left(a-c\right)\)

\(=\left(a-c\right)\left[b\left(a+c\right)-ac-b^2\right]\)

\(=\left(a-c\right)\left(ab+bc-ac-b^2\right)\)

\(=\left(a-c\right)\left[\left(ab-b^2\right)+\left(bc-ac\right)\right]\)

\(=\left(a-c\right)\left[b\left(a-b\right)+c\left(b-a\right)\right]\)

\(=\left(a-c\right)\left[b\left(a-b\right)-c\left(a-b\right)\right]\)

\(=\left(a-c\right)\left(a-b\right)\left(b-c\right)\)

b) \(a^3\left(b-c\right)+b^3\left(c-a\right)+c^3\left(a-b\right)\)

\(=a^3b-a^3c+c^3a-c^3b+b^3\left(c-a\right)\)

\(=\left(a^3b-c^3b\right)-\left(a^3c-c^3a\right)-b^3\left(a-c\right)\)

\(=b\left(a^3-c^3\right)-ac\left(a^2-c^2\right)-b^3\left(a-c\right)\)

\(=b\left(a-c\right)\left(a^2+ac+c^2\right)-ac\left(a-c\right)\left(a+c\right)-b^3\left(a-c\right)\)

\(=\left(a-c\right)\left[b\left(a^2+ac+c^2\right)-ac\left(a+c\right)-b^3\right]\)

\(=\left(a-c\right)\left(ba^2+abc+bc^2-a^2c-ac^2-b^3\right)\)

\(=\left(a-c\right)\left[\left(ba^2-a^2c\right)+\left(abc-ac^2\right)+\left(bc^2-b^3\right)\right]\)

\(=\left(a-c\right)\left[a^2\left(b-c\right)+ac\left(b-c\right)+b\left(c^2-b^2\right)\right]\)

\(=\left(a-c\right)\left[a^2\left(b-c\right)+ac\left(b-c\right)-b\left(b^2-c^2\right)\right]\)

\(=\left(a-c\right)\left[a^2\left(b-c\right)+ac\left(b-c\right)-b\left(b-c\right)\left(b+c\right)\right]\)

\(=\left(a-c\right)\left(b-c\right)\left[a^2+ac-b\left(b+c\right)\right]\)

\(=\left(a-c\right)\left(b-c\right)\left(a^2+ac-b^2-bc\right)\)

\(=\left(a-c\right)\left(b-c\right)\left[\left(a-b\right)\left(a+b\right)+c\left(a-b\right)\right]\)

\(=\left(a-c\right)\left(b-c\right)\left(a-b\right)\left(a+b+c\right)\)

Bình luận (1)
NT
15 tháng 8 2018 lúc 9:13

Khúc cuối nè

undefined

Bình luận (1)

Các câu hỏi tương tự
HA
Xem chi tiết
LL
Xem chi tiết
HD
Xem chi tiết
LH
Xem chi tiết
NC
Xem chi tiết
HD
Xem chi tiết
KJ
Xem chi tiết
H24
Xem chi tiết
EC
Xem chi tiết