a) Ta có: \(4b^2c^2-\left(b^2+c^2-a^2\right)^2\)
\(=\left(2bc-b^2-c^2+a^2\right)\left(2bc+b^2+c^2-a^2\right)\)
\(=-\left(b^2-2bc+c^2-a^2\right)\left[\left(b^2+2bc+c^2\right)-a^2\right]\)
\(=-\left[\left(b^2-2bc+c^2\right)-a^2\right]\left[\left(b+c\right)^2-a^2\right]\)
\(=-\left[\left(b-c\right)^2-a^2\right]\left(b+c-a\right)\left(b+c+a\right)\)
\(=-\left(b-c-a\right)\left(b-c+a\right)\left(b+c-a\right)\left(b+c+a\right)\)