Ta có:
\(\left(a^2+b^2\right)\left(x^2+y^2\right)=\left(ax+by\right)^2\)
\(\Leftrightarrow\) \(a^2x^2+a^2y^2+b^2x^2+b^2y^2=a^2x^2+2axby+b^2y^2\)
\(\Leftrightarrow\) \(a^2y^2+b^2x^2=2axby\)
\(\Leftrightarrow\) \(a^2y^2+b^2x^2-2axby=0\)
\(\Leftrightarrow\) \(\left(ay-bx\right)^2=0\)
\(\Leftrightarrow\) \(ay-bx=0\)
\(\Leftrightarrow\) \(ay=bx\)
\(\Leftrightarrow\) \(\dfrac{a}{x}=\dfrac{b}{y}\)