Bài 3: Những hằng đẳng thức đáng nhớ

OY

chứng minh rằng a=b=c nếu có 1 trong các điều kiện sau:

a,a^2+b^2+c^2=ab+bc+ca

b,(a+b+c)^2=3(a^2+b^2+c^2)

c,(a+b+c)^2=3(ab+ac+bc)

DN
28 tháng 7 2018 lúc 9:03

a,Ta có: a^2 + b^2 + c^2 = ab + bc + ca
<=> 2.a^2 + 2.b^2 + 2.c^2 = 2.ab + 2.bc + 2.ca
<=> ( a^2 - 2ab + b^2 ) + ( b^2 - 2bc +c^2 ) + ( c^2 - 2ac + a^2 ) =0
<=> (a-b)^2 + (b-c)^2 + (c -a)^2 =0 (1)
Vì (a-b)^2≧0 ; (b-c)^2≧0 ; (c -a)^2 ≧ 0 với mọi a,b,c.
=> (a-b)^2 + (b-c)^2 + (c -a)^2 ≧ 0 (2)
Từ (1) và (2) :
=>a - b = 0; b - c = 0 ; c - a = 0 => a=b=c
Vậy a=b=c.

b,Ta có:(a+b+c)^2=3(a^2+b^2+c^2)

<=>a^2+b^2+c^2+2ab+2ac+2bc=3a^2+3b^2+3c^2

<=>a^2+b^2+c^2+2ab+2ac+2bc-3a^2-3b^2-3c^2=0

<=>-2a^2-2b^2-2c^2+2ab+2ac+2bc=0

<=>(-a^2+2ab-b^2)+(-b^2+2bc-c^2)+(-a^2+2ac-c^2)=0

<=>(-a+b)^2+(-b+c)^2+(-a+c)^2=0(1)

ta có:(-a+b)^2≧0, (-b+c)^2≧0, (-a+c)^2≧0(2)với mọi a,b,c.

từ (1)và (2)=>(-a+b)^2=0; (-b+c)^2=0; (-a+c)^2=0

<=>-a+b=0; -b+c=0; -a+c=0

<=>a=b=c

c, (a + b + c)^2=3(ab+ac+bc)
<=>a^2 +b^2+c^2+2ab+2ac+2bc -3ab-3ac-3bc=0
<=>a^2+b^2+c^2-ab-ac-bc=0
<=> 2a^2+2b^2+2c^2-2ab-2ac-2bc=0
<=> (a^2 - 2ab + b^2) + (b^2 - 2bc + c^2) + (c^2 - 2ca + a^2) = 0
<=> (a - b)^2 + (b - c)^2 + (c - a)^2 = 0
<=> a = b = c

Chúc bạn học tốtok

Bình luận (1)

Các câu hỏi tương tự
H24
Xem chi tiết
NT
Xem chi tiết
TT
Xem chi tiết
NG
Xem chi tiết
H24
Xem chi tiết
CT
Xem chi tiết
AN
Xem chi tiết
HL
Xem chi tiết
MA
Xem chi tiết