Bài 3: Những hằng đẳng thức đáng nhớ

SK

Chứng minh rằng :

a) \(\left(a+b\right)\left(a^2-ab+b^2\right)+\left(a-b\right)\left(a^2+ab+b^2\right)=2a^3\)

b) \(a^3+b^3=\left(a+b\right)\left[\left(a-b\right)^2+ab\right]\)

c) \(\left(a^2+b^2\right)\left(c^2+d^2\right)=\left(ac+bd\right)^2+\left(ad-bc\right)^2\)

TN
6 tháng 6 2017 lúc 11:01

\(a,\left(a+b\right)\left(a^2-ab+b^2\right)+\left(a-b\right)\left(a^2+ab+b^2\right)\)\(=\left(a^3+b^3\right)+\left(a^3-b^3\right)=2a^3\Rightarrowđpcm\)

\(b,\left(a+b\right)\left[\left(a-b\right)^2+ab\right]=\left(a+b\right)\left(a^2-2ab+b^2+ab\right)=\left(a+b\right)\left(a^2-ab+b^2\right)\)\(=\left(a^3+b^3\right)\Rightarrowđpcm\)

\(c,\left(a^2+b^2\right)\left(c^2+d^2\right)=a^2c^2+a^2d^2+b^2c^2+b^2d^2=\left(a^2c^2+2abcd+b^2d^2\right)+\left(a^2d^2-2abcd+b^2c^2\right)\)\(=\left(ac+bd\right)^2+\left(ad-bc\right)^2\Rightarrowđpcm\)

Bình luận (0)
MP
18 tháng 8 2017 lúc 18:11

a) (a+b)(a2-ab+b2)+(a-b)(a2+ab+b2)

= a3+b3+a3-b3 = 2a3

b) a3+b3

= (a+b)(a2-ab+b2)

= (a+b)(a2- 2ab+b2)+ab

= (a+b)(a2-b2)+ab

Bình luận (0)
H24
12 tháng 10 2017 lúc 21:54

a. Biến đổi vế trái:

(a+b)(a2−ab+b2)+(a−b)(a2+ab+b2)=a3+b3+a3−b3=2a3

=>VT bằng VP (đpcm)

b. Biến đổi vế phải:

(a+b)[(a−b)2+ab]=(a+b)[a2−2ab+b2+ab]

=(a+b)(a2−ab+b2)=a3+b3

=>VP bằng VT (đpcm)

c. Biến đổi vế phải:

(ac+bd)2+(ad−bc)2=a2c2+2abcd+b2d2+a2d2−2abcd+b2c2

=a2c2+b2d2+a2d2+b2c2=c(a2+b2)+d2(a2+b2)=(a2+b2)(c2+d2)

=>VP bằng VT (đpcm)


Bình luận (0)

Các câu hỏi tương tự
TY
Xem chi tiết
QN
Xem chi tiết
AN
Xem chi tiết
LL
Xem chi tiết
KM
Xem chi tiết
HD
Xem chi tiết
LT
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết