Bài 3: Những hằng đẳng thức đáng nhớ

TH

Chứng minh rằng

1. 7.52n+12.6n chia hết cho 19( n thuocj N)

2. 14n +2.122n+1 chia hết cho 133 ( n thuộc N)

HM
25 tháng 7 2017 lúc 17:02

1)

\(7.5^{2n}+12.6^n\)

\(=7.25^n+12.25^n-12.25^n+12.6^n\)

\(=19.25^n-12.\left(25^n-6^n\right)\)

Ta có: 19.25n \(⋮\) 19

Vì 25n - 6n \(⋮\) 25 - 6

=> 25n - 6n \(⋮\) 19

Do đó : \(19.25^n-12.\left(25^n-6^n\right)\) \(⋮\) 19

=> \(7.5^{2n}+12.6^n\) \(⋮\) 19

2)

\(11^{n+2}+12^{2n+1}\)

\(=11^n.121+144^n.12\)

\(=11^n.133-11^n.12+144^n.12\)

\(=11^n.133+12.\left(144^n-11^n\right)\)

Ta có: 11n .133 \(⋮\) 133

Vì 144n - 11n \(⋮\) 144 - 11

=> 144n - 11n \(⋮\) 133

Do đó : \(11^n.133+12.\left(144^n-11^n\right)\) \(⋮\) 133

=> \(11^{n+2}+12^{2n+1}\) \(⋮\) 133

Bình luận (0)

Các câu hỏi tương tự
LN
Xem chi tiết
NL
Xem chi tiết
NT
Xem chi tiết
NL
Xem chi tiết
KN
Xem chi tiết
PM
Xem chi tiết
TC
Xem chi tiết
HS
Xem chi tiết
TK
Xem chi tiết