Bài 5: Những hằng đẳng thức đáng nhớ (Tiếp)

TD

chứng minh các hằng đẳng thức

a) (a+b+c)3-a3-b3-c3=3(a+b) (b+c)(c+d)

LP
14 tháng 5 2017 lúc 23:02

VT = (a+b+c)3-a3-b3-c3

= \([\left(a+b\right)+c]^3\)- a3-b3-c3

= (a+b)3+c3 +3ab(a+b)+3c(a+b)(a+b+c)-a3-b3-c3

=3(a+b) \([ab+c\left(a+b+c\right)]\)

= 3(a+b) \([ab+ac+bc+c^2]\)

= 3(a+b)(b+c)(c+a)

\(\Rightarrow\)VT=VP= 3(a+b)(b+c)(c+a)

Bình luận (2)
HQ
15 tháng 5 2017 lúc 8:30

Giải:

Ta có: \(VT=\left(a+b+c\right)^3-a^3-b^3-c^3\)

\(=\left[\left(a+b+c\right)^3-a^3\right]-\left(b^3+c^3\right)\)

\(=\left(b+c\right)\left[\left(a+b+c\right)^2+\left(a+b+c\right)a+a^2\right]-\left(b+c\right)\left(b^2-bc+c^2\right)\)

\(=\left(b+c\right)\left(3a^2+3ab+3bc+3ca\right)\)

\(=3\left(b+c\right)\left[a\left(a+b\right)+c\left(a+b\right)\right]\)

\(=3\left(a+b\right)\left(b+c\right)\left(c+a\right)=VP\) (Đpcm)

Bình luận (0)

Các câu hỏi tương tự
KN
Xem chi tiết
DV
Xem chi tiết
DV
Xem chi tiết
DV
Xem chi tiết
DN
Xem chi tiết
DN
Xem chi tiết
DN
Xem chi tiết
KN
Xem chi tiết
NN
Xem chi tiết