Bài 5: Những hằng đẳng thức đáng nhớ (Tiếp)

DN

Cho a + b+c = 0. Chứng minh 2*(a+ b2 + c2) * 3*(a3 + b3 + c3) = 5*(a5 + b5 + c5). Nhanh lên mọi người ơi ai giải được thì mình cảm ơn nhiều

 

AH
26 tháng 8 2021 lúc 14:28

Lời giải:

\(a^2+b^2+c^2=(a+b)^2-2ab+c^2=(-c)^2-2ab+c^2=2(c^2-2ab)\)

\(a^3+b^3+c^3=(a+b)^3-3ab(a+b)+c^3=(-c)^3-3ab(-c)+c^3=3abc\)

Do đó: 

$2(a^2+b^2+c^2).3(a^3+b^3+c^3)=36abc(c^2-2ab)$

Mặt khác:
\(a^5+b^5+c^5=(a^2+b^2)(a^3+b^3)-a^2b^2(a+b)+c^5\)

\(=[(a+b)^2-2ab][(a+b)^3-3ab(a+b)]-a^2b^2(-c)+c^5\)

\(=(c^2-2ab)(-c^3+3abc)+a^2b^2c+c^5\)

\(=-c^5+3abc^3+2abc^3-6a^2b^2c+a^2b^2c+c^5\)

\(=5abc^3-5a^2b^2c=5abc(c^2-ab)\)

\(\Rightarrow 5(a^5+b^5+c^5)=25abc(c^2-ab)\)

Do đó 2 đẳng thức trên không bằng nhau.

 

Bình luận (0)

Các câu hỏi tương tự
DN
Xem chi tiết
DN
Xem chi tiết
DN
Xem chi tiết
DV
Xem chi tiết
LL
Xem chi tiết
DN
Xem chi tiết
DV
Xem chi tiết
DV
Xem chi tiết
H24
Xem chi tiết