Bài 3: Những hằng đẳng thức đáng nhớ

ZN

Chứng minh biểu thức sau luôn dương với mọi x x^2+2x+7

HD
30 tháng 6 2021 lúc 16:05

$x^2+2x+7$

$=x^2+2x+1+6$

$=(x+1)^2+6$

Vì $(x+1)^2 \ge 0$

$\Rightarrow (x+1)^2+6 \ge 6>0\forall x$

Hay $x^2+2x+7>0\forall x$

Bình luận (0)
NT
30 tháng 6 2021 lúc 16:06

Ta có: \(x^2+2x+7\)

\(=x^2+2x+1+6\)

\(=\left(x+1\right)^2+6>0\forall x\)(đpcm)

Bình luận (0)