Bài 4: Những hằng đẳng thức đáng nhớ (Tiếp)

33

Cho x+y+z=1. Chứng minh rằng: x2 + y2 + z2 >= 1/3

DT
10 tháng 5 2017 lúc 21:40
x^2 + y^2 + x^2 >= 1/3
<=> x^2 + y^2 + x^2 >= (x + y + z)/3 ( vì x + y + z = 1)
<=> x^2 + y^2 + x^2 - (x + y + z)/3 >= 0
<=> 3x^2 + 3y^2 + 3z^2 - x - y - z >= 0
<=> x(3x - 1) + y(3y - 1) + z(3z - 1) >= 0
<=> x(3x - x - y - z) + y(3y - x - y - z) + z(3z - x - y - z) >= 0
<=> x(2x - y - z) + y(2y - x -z) + z(2z - x - y) >= 0
<=> 2x^2 - xy - xz + 2y^2 - xy - yz + 2z^2 - xz - yz >= 0
<=> (x^2 - 2xy - y^2) + (y^2 - 2yz - z^2) + (x^2 - 2xz - z^2) >= 0
<=> (x - y)^2 + (y - z)^2 - (x - z)^2 >= 0 (đúng)
=> x^2 + y^2 + x^2 >= 1/3

Dấu = xảy ra <=> x = y = z =1/3
Bình luận (1)
HD
10 tháng 5 2017 lúc 22:03

Cách làm của Nguyễn Đặng Thanh Trúc hơi dài , mik làm cchs khác nhé :

==================

Áp dụng BDDT Co- si dạng engel

Ta có : x2 + y2 + z2 \(\ge\dfrac{\left(x+y+z\right)^2}{1+1+1}=\dfrac{1}{3}\)

Dấu "=" xảy ra khi : x=y=z =1/3

Bình luận (1)
AV
27 tháng 8 lúc 8:18

câu của hoang thien di là bđt s vác sơ chứ cô si j

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
KP
Xem chi tiết
TT
Xem chi tiết
LH
Xem chi tiết
TF
Xem chi tiết
DS
Xem chi tiết
BE
Xem chi tiết
AP
Xem chi tiết
TP
Xem chi tiết