Bài 3: Những hằng đẳng thức đáng nhớ

H24

Cho x+y+z=0. Chứng minh x3+x2z-xyz+y2z+y3=0

H9
28 tháng 9 2023 lúc 18:10

Ta có:

\(x^3+x^2z-xyz+y^2z+y^3\)

\(=\left(x^3+y^3\right)+\left(x^2z-xyz+y^2z\right)\)

\(=\left(x+y\right)\left(x^2-xy+y^2\right)+z\left(x^2-xy+y^2\right)\)

\(=\left(x+y+z\right)\left(x^2-xy+y^2\right)\)

\(=0\cdot\left(x^2-xy+y^2\right)\)

\(=0\left(dpcm\right)\)

Bình luận (0)