Bài 7: Tỉ lệ thức

NY

Cho tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}.\) Chứng minh rằng ta có tỉ lệ thức sau: \(\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{a^2+b^2}{c^2+d^2}\)

SN
2 tháng 9 2017 lúc 23:02

Theo đề bài, ta có:
\(\dfrac{a}{b}\)=\(\dfrac{c}{d}\)=\(\dfrac{a}{c}\)=\(\dfrac{b}{d}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{a}{b}\)=\(\dfrac{c}{d}\)=\(\dfrac{a}{c}\)=\(\dfrac{b}{d}\)=\(\dfrac{a+b}{c+d}\)=\(\left(\dfrac{a+b}{c+d}\right)^2\)(*)
=> \(\dfrac{a}{c}\)=\(\dfrac{b}{d}\)=\(\dfrac{a^2}{c^2}\)=\(\dfrac{b^2}{d^2}\)=\(\dfrac{a^2+b^2}{c^2+d^2}\)(**)
Từ (*) và (**) suy ra:
\(\left(\dfrac{a+b}{c+d}\right)^2\)=\(\dfrac{a^2+b^2}{c^2+d^2}\)(đpcm)

Bình luận (0)

Các câu hỏi tương tự
VH
Xem chi tiết
NA
Xem chi tiết
LH
Xem chi tiết
VT
Xem chi tiết
TT
Xem chi tiết
VT
Xem chi tiết
DT
Xem chi tiết
NT
Xem chi tiết
NH
Xem chi tiết