a: Xét tứ giác CKFM có góc CKF+góc CMF=180 độ
nên CKFM là tứ giác nội tiếp
b: Xét ΔDAF và ΔDMA có
góc DAF=góc DMA
góc ADF chung
Do đó: ΔDAF đồng dạng với ΔDMA
=>DA/DM=DF/DA
hay DA^2=DM*DF
a: Xét tứ giác CKFM có góc CKF+góc CMF=180 độ
nên CKFM là tứ giác nội tiếp
b: Xét ΔDAF và ΔDMA có
góc DAF=góc DMA
góc ADF chung
Do đó: ΔDAF đồng dạng với ΔDMA
=>DA/DM=DF/DA
hay DA^2=DM*DF
Cho đường tròn tâm O và dây AB không phải là đường kính. Vẽ đường kính CD vuông góc với AB tại K (D thuộc cung nhỏ AB). M là một điểm thuộc cung nhỏ BC (M không trùng B và C). Dm cắt AB tại F.
a) Chứng minh tứ giác CKFM nội tiếp.
b)Chứng minh Df.DM=AD2
c) tia CM cắt đường thẳng AB tại F. Chứng tỏ rằng tiếp tuyến tại M của đường tròn O đi qua trung điểm của È.
d) chứng minh \(\frac{FB}{EB}=\frac{KF}{KA}\)
cho đường tròn (O; R) hai đường kính AB và CD vuông góc với nhau, trên cung nhỏ BC lấy I, IA cắt CD rại F. Tiếp tuyến tại I cắt AB tại E. a) Chứng minh ID phân giác góc AIB. b) Chứng minh 4 điểm B,I,F,O cùng thuộc 1 đường tròn. c) Tính EB,EA theo R
Cho đường tròn (O) đường kính AB=2R. Vẽ bán kính OC vuông góc với AB. Lấy điểm K thuộc cung nhỏ AC, kẻ KH vuông góc với AB tại H. Tia AC cắt HK tại I, tia BC cắt tia HK tại E, AE cắt đường tròn (O) tại F.
a) Chứng minh BHFE là tứ giác nội tiếp
b) Chứng minh BI.BF=BC.BE
c) Tính diện tích tam giác FEC theo R khi H là trung điểm của OA
d) Cho K di chuyển trên cung nhỏ AC, chứng minh đường thẳng FH luôn đi qua một điểm cố định
Cho đường tròn tâm O .Kẻ đường kính AB và CD vuông góc với nhau . Gọi E là điểm chính giữa cung nhỏ CD .EA cắt CD tại F ;ED cắt AB tại M
a/ Các tam giác CEF và EMB là những tam giác gì ?
b/ chứng minh bốn điểm D , C, M ,B thuộc đường tròn tâm E .
Cho nửa đường tròn tâm O đường kính AB. LẤY điểm C nằm giữa A và B. Qua C kẻ đường thẳng vuông góc với AB cắt đường tròn tâm O tại I. Trên cung nhỏ BI lấy điểm M ( M khác B và I ) BM cắt CI tại D a) Chứng minh tứ giác ACMD nội tiếp b) Tiếp tuyến tại M của đường tròn tâm O cắt CI tại N. Gọi giao điểm của AM và CI là K. Chứng minh tam giác NMK cân c) Khi M thay đổi trên cung nhỏ BI chứng minh đường tròn ngoại tiếp tam giác AKD luôn đi qua một điểm cố định khác điểm A Giúp với ạ
Trên ( O;R), vẽ đường kính AB. lấy C thuộc (O) sao cho AC=R và lấy điểm D bất kì trên cung nhỏ BC (D ko trùng với B,C ). Gọi E là giao điểm của AD và BC. Đường thẳng đi qua E vuông góc với đưởng thẳng AB tại H. C/m tứ giác AHEC là tứ giác nội tiếp
Cho đường tròn tâm O đường kính AB. Vẽ dây cung CD vuông góc với AB tại I ( I nằm giữa A và O ). Lấy điểm E trên cung nhỏ BC ( E khác B, C ), AE cắt CD tại F. Chứng minh:
a) BEFI là tứ giác nội tiếp đường tròn
b) AE.AF = AC2
c) Khi E chạy trên cung nhỏ BC thì tâm đường tròn ngoại tiếp ΔCEF luôn thuộc một đường thẳng cố định
Cho đường tròn tâm O đường kính AB. Lấy điểm C nằm trên đường tròn sao cho số đo cung AC gấp đôi số đo cung BC. Tiếp tuyến tại B với đường tròn tâm O cắt AC tại E. Gọi I là trung điểm của dây AC a) Chứng minh rằng tứ giác IOBE nội tiếp b) Chứng minh EB²=EC.EA c) Biết bán kính đường tròn tâm O bằng 2cm, tính diện tích tam giác ABE Vẽ hình và giải giúp e với ạ
Cho đường tròn tâm O đường kính AB. Lấy điểm C nằm trên đường tròn sao cho số đo cung AC gấp đôi số đo cung CB. Tiếp tuyến tại B với đường tròn (O) cắt AC tại E. Gọi I là trung điểm của dây AC. a) Chứng minh rằng tứ giác IOBE nội tiếp b) Chứng minh EB→ = EC . EA c) Biết bán kính đường tròn (O) bằng 2cm, tính diện tích tam giác ABE. Giải giúp em với ạ