Ta có:
Đặt A=\(\frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+...+\frac{1}{7^{50}}\)
⇒7A=\(\frac{1}{7^2}+\frac{1}{7^3}+...+\frac{1}{7^{51}}\)
⇒7A-A=\(\frac{1}{7^{51}}-\frac{1}{7}\)
⇒6A=\(\frac{1}{7^{51}}-\frac{1}{7}\)⇒A=\(\frac{1}{6.7^{51}}-\frac{1}{6.7}\)
⇒C=\(\frac{1}{6.7^{51}}-\frac{1}{6.7}\)+\(\frac{1}{6.7^{50}}\)
=\(\frac{4}{3.7^{51}}-\frac{1}{42}\)