\(P=\dfrac{2x^5-x^4-2x+1}{\left(2x-1\right)\left(2x+1\right)}+\dfrac{2\left(4x^2-2x+1\right)}{\left(2x+1\right)\left(4x^2-2x+1\right)}\)
\(P=\dfrac{2x^5-x^4-2x+1}{\left(2x-1\right)\left(2x+1\right)}+\dfrac{2}{\left(2x+1\right)}\)
\(P=\dfrac{2x^5-x^4-2x+1+2\left(2x-1\right)}{\left(2x-1\right)\left(2x+1\right)}\)
\(P=\dfrac{2x^5-x^4+2x-1}{\left(2x-1\right)\left(2x+1\right)}\)
\(P=\dfrac{x^4\left(2x-1\right)+2x-1}{\left(2x-1\right)\left(2x+1\right)}\)
\(P=\dfrac{\left(2x-1\right)\left(x^4+1\right)}{\left(2x-1\right)\left(2x+1\right)}=\dfrac{x^4+1}{2x+1}\)
cho P=6
\(\dfrac{x^4+1}{2x+1}=6\)
\(\Leftrightarrow x^4+1=6\left(2x+1\right)\)(đk \(x\ne-\dfrac{1}{2}\))
\(\Leftrightarrow x^4-12x-5=0\)
rồi suy ra x