Bài 9: Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp

SP

phân tích đa thức thành nhân tử

a/4x-4y+x^2-2xy+y^2

b/x^4-4x^3-8x^2+8x

c/x^3+x^2-4x-4

d/x^4-x^2+2x-1

e/x^4+x^3+x^2+1

f/x^3-4x^2+4x-1

PT
18 tháng 9 2018 lúc 11:05

a) \(4x-4y+x^2-2xy+y^2\)

\(=4\left(x-y\right)+\left(x-y\right)^2\)

\(=\left(x-y\right)\left(4+x-y\right)\)

b) \(x^4-4x^3-8x^2+8x\)

\(=x^4+2x^3-6x^3-12x^2+4x^2+8x\)

\(=x^3\left(x+2\right)-6x^2\left(x+2\right)+4x\left(x+2\right)\)

\(=\left(x+2\right)\left(x^3-6x^2+4x\right)\)

\(=x\left(x+2\right)\left(x^2-6x+4\right)\)

c) \(x^3+x^2-4x-4\)

\(=x^3-2x^2+3x^2-6x+2x-4\)

\(=x^2\left(x-2\right)+3x\left(x-2\right)+2\left(x-2\right)\)

\(=\left(x-2\right)\left(x^2+3x+2\right)\)

\(=\left(x-2\right)\left(x^2+2x+x+2\right)\)

\(=\left(x-2\right)\left[x\left(x+2\right)+\left(x+2\right)\right]\)

\(=\left(x-2\right)\left(x+2\right)\left(x+1\right)\)

d) \(x^4-x^2+2x-1\)

\(=x^4-\left(x^2-2x+1\right)\)

\(=x^4-\left(x-1\right)^2\)

\(=\left(x^2\right)^2-\left(x-1\right)^2\)

\(=\left(x^2-x+1\right)\left(x^2+x-1\right)\)

e)Sửa đề \(x^4+x^3+x^2-1\)

\(=x^3\left(x+1\right)+\left(x-1\right)\left(x+1\right)\)

\(=\left(x+1\right)\left(x^3+x-1\right)\)

f) \(x^3-4x^2+4x-1\)

\(=x^3-x^2-3x^2+3x+x-1\)

\(=x^2\left(x-1\right)-3x\left(x-1\right)+\left(x-1\right)\)

\(=\left(x-1\right)\left(x^2-3x+1\right)\)

Bình luận (0)

Các câu hỏi tương tự
NA
Xem chi tiết
TA
Xem chi tiết
NH
Xem chi tiết
BN
Xem chi tiết
AD
Xem chi tiết
ML
Xem chi tiết
KS
Xem chi tiết
H24
Xem chi tiết
TP
Xem chi tiết