Bài 9: Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp

RC

cho a+b+c=1/2019; ax+by+cz=0. c/m:ax^2+by^2+cz^2/bc(y-z)^2+ca(z-x)^2+ab(x-y)^2= 2019

giúp mik với

AH
29 tháng 7 2019 lúc 0:24

Lời giải:

Từ \(ax+by+cz=0\Rightarrow (ax+by+cz)^2=0\)

\(\Leftrightarrow a^2x^2+b^2y^2+c^2z^2=-2(axby+axcz+bycz)\)

\(=-2(bcyz+cazx+abxy)\)

Khi đó:

\(bc(y-z)^2+ca(z-x)^2+ab(x-y)^2=bc(y^2-2yz+z^2)+ca(z^2-2zx+x^2)+ab(x^2-2xy+y^2)\)

\(=(bcy^2+bcz^2+caz^2+cax^2+abx^2+aby^2)-(2bcyz+2cazx+2abxy)\)

\(=(bcy^2+bcz^2+caz^2+cax^2+abx^2+aby^2)+(a^2x^2+b^2y^2+c^2z^2)\)

\(=ax^2(a+b+c)+by^2(a+b+c)+cz^2(a+b+c)=(a+b+c)(ax^2+by^2+cz^2)\)

Do đó:

\(\frac{ax^2+by^2+cz^2}{bc(y-z)^2+ca(z-x)^2+ab(x-y)^2}=\frac{ax^2+by^2+cz^2}{(ax^2+by^2+c^2)(a+b+c)}=\frac{1}{a+b+c}=\frac{1}{\frac{1}{2019}}=2019\)

Ta có đpcm.

Bình luận (2)

Các câu hỏi tương tự
DT
Xem chi tiết
NN
Xem chi tiết
JH
Xem chi tiết
TH
Xem chi tiết
H24
Xem chi tiết
TD
Xem chi tiết
PN
Xem chi tiết
HN
Xem chi tiết
H24
Xem chi tiết