Bài 4: Những hằng đẳng thức đáng nhớ (Tiếp)

SH

Cho a^2+ b^2 + c^2=ab+ ac + bc

Chứng minh a=b=c

TK
11 tháng 8 2017 lúc 21:12

Ta có: \(a^2+b^2+c^2=ab+ac+bc\)

\(\Leftrightarrow2\left(a^2+b^2+c^2\right)=2\left(ab+ac+bc\right)\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc=0\)

\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+a^2-2ac+c^2=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(a-c\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\b-c=0\\a-c=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=b\\b=c\\a=c\end{matrix}\right.\Leftrightarrow a=b=c\)

=> đpcm.

Bình luận (0)
NT
11 tháng 8 2017 lúc 21:50

Hỏi đáp Toán

Bình luận (0)
NT
11 tháng 8 2017 lúc 21:13

\(a^2+b^2+c^2=ab+ac+bc\Rightarrow2a^2+2b^2+2c^2=2ab+2ac+2bc\)

\(\Rightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc=0\)

\(\Rightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(b^2-2bc+c^2\right)=0\)

\(\Rightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2=0\)

\(\left(a-b\right)^2\ge0;\left(a-c\right)^2\ge0;\left(b-c\right)^2\ge0\)

\(\Rightarrow\left\{{}\begin{matrix}\left(a-b\right)^2=0\\\left(a-c\right)^2=0\\\left(b-c\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a-b=0\\a-c=0\\b-c=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=b\\a=c\\b=c\end{matrix}\right.\Rightarrow a=b=c\)

Vậy a=b=c

Bình luận (0)

Các câu hỏi tương tự
DA
Xem chi tiết
TD
Xem chi tiết
NT
Xem chi tiết
BT
Xem chi tiết
NN
Xem chi tiết
DP
Xem chi tiết
NC
Xem chi tiết
NT
Xem chi tiết
NA
Xem chi tiết