Ôn tập phép nhân và phép chia đa thức

TL

bài 1

tìm gtng và gtln

d=-4x^2 -4x +3

c= 9x^2 +6x +2

e=25x^2 +16x +4

bài 2 cho đa thức x^4 - x^3 +6x^2 -x +a chia cho x^2 -x +5 tìm a để số dư bằng 0

TN
24 tháng 8 2017 lúc 15:14

Bài 1:

\(D=-4x^2-4x+3\)

\(=-\left(4x^2+4x+1\right)+4\)

\(=-\left(2x+1\right)^2+4\)

Với mọi giá trị của x ta có:

\(\left(2x+1\right)^2\ge0\Rightarrow-\left(2x+1\right)^2\le0\)

\(\Rightarrow-\left(2x+1\right)^2+4\le4\)

Vậy Max D = 4

Để D = 4 thì \(2x+1=0\Rightarrow x=-\dfrac{1}{2}\)

\(C=9x^2+6x+2=\left(9x^2+6x+1\right)+1\)

\(=\left(3x+1\right)^2+1\)

Với mọi giá trị của x ta có:

\(\left(3x+1\right)^2\ge0\Rightarrow\left(3x+1\right)^2+1\ge1\)

Vậy Min C = 1

Để C = 1 thì \(3x+1=0\Rightarrow x=-\dfrac{1}{3}\)

\(E=25x^2+16x+4\)

\(=25\left(x^2+\dfrac{16}{25}x+\dfrac{64}{625}\right)+\dfrac{36}{25}\)

\(=25\left(x+\dfrac{8}{25}\right)^2+\dfrac{36}{25}\)

Với mọi giá trị của x ta có:

\(25\left(x+\dfrac{8}{25}\right)^2\ge0\Rightarrow25\left(x+\dfrac{8}{25}\right)^2+\dfrac{36}{25}\ge\dfrac{36}{25}\)Vậy Min E = \(\dfrac{36}{25}\)

Để \(E=\dfrac{36}{25}\) thì \(x+\dfrac{8}{25}=0\Rightarrow x=-\dfrac{8}{25}\)

Sai thông cảm cho tớ nha~.~. Chúc bạn hc tốt ^.^

Bình luận (0)

Các câu hỏi tương tự
BU
Xem chi tiết
FA
Xem chi tiết
DA
Xem chi tiết
TM
Xem chi tiết
NN
Xem chi tiết
MD
Xem chi tiết
EN
Xem chi tiết
VL
Xem chi tiết
HM
Xem chi tiết