Bài 7: Tỉ lệ thức

HS

Bài 1: Cho abc = 1 .Tính A= \(\dfrac{a}{ab+a+1}\)+\(\dfrac{b}{bc+b+1}\)+\(\dfrac{c}{ca+c+1}\).

Bài 2: Cho x-y=7 . Tính giá trị biểu thức B= \(\dfrac{3x-7}{2x+y}\)-\(\dfrac{3y+7}{2y+x}\).

Bài 3: Cho a+b+c=2018 và \(\dfrac{1}{a+b}\)+\(\dfrac{1}{b+c}\)+\(\dfrac{1}{c+a}\)=\(\dfrac{1}{2}\). Tính S=\(\dfrac{a}{b+c}\)+\(\dfrac{b}{c+a}\)+\(\dfrac{c}{a+b}\).

Bài 4: Cho 3 số a,b,c khác nhau và khác 0 thỏa mãn điều kiện \(\dfrac{a}{b+c}\)=\(\dfrac{b}{a+c}\)=\(\dfrac{c}{a+b}\)

Tính giá trị biểu thức P=\(\dfrac{b+c}{a}\)+\(\dfrac{a+c}{b}\)+\(\dfrac{a+b}{c}\).

Bài 5: Cho tỉ lệ \(\dfrac{3x-y}{x+y}\)=\(\dfrac{3}{4}\). Tính giá trị tỉ số \(\dfrac{x}{y}\).

NT
2 tháng 2 2018 lúc 21:17

Câu 2 :
\(x-y=7\)
\(\Rightarrow x=7+y\)
*)
\(B=\dfrac{3\left(7+y\right)-7}{2\left(7+y\right)+y}-\dfrac{3y+7}{2y+7+y}\)
\(=\dfrac{21+3y-7}{14+3y}-\dfrac{3y+7}{3y+7}\)
\(=\dfrac{14y+3y}{14y+3y}-1\)
\(=1-1\)
\(=0\)
Vậy B = 0

Bình luận (2)
NH
2 tháng 2 2018 lúc 21:17

2/ Ta có :

\(B=\dfrac{3x-7}{2x+y}-\dfrac{3y+7}{2y+x}\)

\(=\dfrac{3x-\left(x-y\right)}{2x+y}-\dfrac{3y+\left(x-y\right)}{2y+x}\)

\(=\dfrac{3x-x+y}{2y+x}-\dfrac{3y+x-y}{2y+x}\)

\(=\dfrac{2x+y}{2x+y}-\dfrac{2y+x}{2y+x}\)

\(=1-1=0\)

Bình luận (0)
NT
2 tháng 2 2018 lúc 21:26

Bài 3:
\(a+b+c=2018\text{ và }\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\)
\(2018\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)=\dfrac{1}{2}.2018\)
\(\Rightarrow\dfrac{2018}{a+b}+\dfrac{2018}{b+c}+\dfrac{2018}{a+c}=1009\)
\(\Rightarrow\dfrac{\left(a+b\right)+c}{a+b}+\dfrac{a+\left(b+c\right)}{b+c}+\dfrac{b+\left(a+c\right)}{a+c}=1009\)
\(\Rightarrow1+\dfrac{c}{a+b}+\dfrac{a}{b+c}+1+\dfrac{b}{a+c}+1=1009\)
\(\Rightarrow\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{a+b}=1009-3\)
\(\Rightarrow S=1006\)
Vậy \(S=1006\)

Bình luận (0)
NH
2 tháng 2 2018 lúc 21:09

Nhiều qá, lm từng câu 1 nhé bn!

1/ \(A=\dfrac{a}{ab+a+1}+\dfrac{b}{bc+b+1}+\dfrac{c}{ca+c+1}\)

\(=\dfrac{abc}{ab+a+abc}+\dfrac{b}{bc+b+1}+\dfrac{1}{1+bc+b}\)

\(=\dfrac{abc}{a\left(b+1+bc\right)}+\dfrac{b+1}{bc+b+1}\)

\(=\dfrac{bc}{b+1+bc}+\dfrac{b+1}{bc+b+1}\)

\(=\dfrac{bc+b+1}{bc+b+1}\)

\(=1\)

Bình luận (0)
LH
22 tháng 5 2018 lúc 14:24

Bài 5:

\(\dfrac{3x-y}{x+y}=\dfrac{3}{4}\)

=> 4(3x-y)=3(x+y)

=>12x-4y=3x+3y

=>12x-3x=3y+4y

=>9x=7y

=>\(\dfrac{x}{y}=\dfrac{7}{9}\)

Bình luận (0)

Các câu hỏi tương tự
CT
Xem chi tiết
VT
Xem chi tiết
PM
Xem chi tiết
TQ
Xem chi tiết
LT
Xem chi tiết
CN
Xem chi tiết
DT
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết