Bài 7: Tỉ lệ thức

H24

Nếu \(a\left(y+z\right)=b\left(z+x\right)=c\left(x+y\right)\left(1\right)\)

Trong đó a, b, c là các số khác nhau và khác 0 thì: \(\dfrac{y-z}{a\left(b-c\right)}=\dfrac{z-x}{b\left(c-a\right)}=\dfrac{x-y}{c\left(a-b\right)}\)(*)

H24

\(\dfrac{y-z}{a\left(b-c\right)}=\dfrac{z-x}{b\left(c-a\right)}=\dfrac{x-y}{c\left(a-b\right)}\)

\(\Leftrightarrow\dfrac{a\left(y+z\right)}{abc}=\dfrac{b\left(z+x\right)}{abc}=\dfrac{c\left(x+y\right)}{abc}\)

\(\Leftrightarrow\dfrac{\left(x+y\right)-\left(z+x\right)}{ab-ac}=\dfrac{y-z}{a\left(b-c\right)}\)

\(\Leftrightarrow\dfrac{\left(y+z\right)-\left(x+y\right)}{bc-ab}=\dfrac{z-x}{b\left(c-a\right)}=\dfrac{\left(z+x\right)-\left(y+z\right)}{ac-bc}=\dfrac{x-y}{c\left(a-b\right)}\)

\(\Rightarrow\dfrac{y-z}{a\left(b-c\right)}=\dfrac{z-x}{b\left(c-a\right)}=\dfrac{x-y}{c\left(a-b\right)}\left(đpcm\right)\)

Bình luận (0)

Các câu hỏi tương tự
KB
Xem chi tiết
DL
Xem chi tiết
H24
Xem chi tiết
NA
Xem chi tiết
BN
Xem chi tiết
AT
Xem chi tiết
NS
Xem chi tiết
DT
Xem chi tiết
NX
Xem chi tiết