Bài 3: Những hằng đẳng thức đáng nhớ

VA

B1: Cho biểu thức A=\(\left(x^2+x+1\right)\left(x^2-x+1\right)\left(x^4-x^2+1\right)\)

Chứng minh rằng biểu thức A luôn luôn có giá trị dương với mọi giá trị của biến

B2: Chứng minh rằng các biểu thức sau luôn luôn có giá trị dương với mọi giá trị của các biến:

a,M= \(25x^2-20x+7\)

b, N= \(9x^2-6xy+2y^2+1\)

B3: Chứng minh rằng giá trị của các biểu thức sau luôn luôn âm với mọi giá trijcuar các biến

a, P=\(2x-x^2-2\)

b, Q=\(-x^2-y^2+8x+4y-21\)

Các bạn biết làm bài nào thì giúp mk nha

NT
22 tháng 9 2018 lúc 16:03

1, \(A=\left(x^2+x+1\right)\left(x^2-x+1\right)\left(x^4-x^2+1\right)\)

\(=\left(x^2+2.\dfrac{1}{2}x+\dfrac{1}{4}-\dfrac{1}{4}+1\right)\left(x^2-2.\dfrac{1}{2}x+\dfrac{1}{4}-\dfrac{1}{4}+1\right)\left(x^4-2.\dfrac{1}{2}x^2+\dfrac{1}{4}-\dfrac{1}{4}+1\right)\)\(=\left[\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\right]\left[\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\right]\left[\left(x^2-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\right]\)

Ta có: \(\left(x+\dfrac{1}{2}\right)^2\ge0\forall x\Rightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge0\)

\(\left(x-\dfrac{1}{2}\right)^2\ge0\forall x\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge0\)

\(\left(x^2-\dfrac{1}{2}\right)^2\ge0\forall x\Rightarrow\left(x^2-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge0\)

Từ 3 điều trên \(\Rightarrow\left[\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\right]\left[\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\right]\left[\left(x^2-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\right]\ge0\)Vậy biểu thức A luôn có giá trị dương với mọi giá trị của biến

2,

a, \(M=25x^2-20x+7\)

\(=25x^2-20x+4+3\)

\(=\left(5x-2\right)^2+3\)

Ta có: \(\left(5x-2\right)^2\ge0\forall x\Rightarrow\left(5x-2\right)^2+3\ge0\)

Vậy biểu thức M luôn có giá trị dương với mọi giá trị của biến

b, \(N=9x^2-6xy+2y^2+1\)

\(=9x^2-6xy+y^2+y^2+1\)

\(=\left(3x-y\right)^2+y^2+1\)

Ta có: \(\left(3x-y\right)^2\ge0\forall x,y\)

\(y^2\ge0\Rightarrow y^2+1\ge0\forall y\)

Từ 2 điều trên \(\Rightarrow\left(3x-y\right)^2+y^2+1\ge0\)

Vậy biểu thức N luôn có giá trị dương với mọi giá trị của biến

3,

a, \(P=2x-x^2-2\)

\(=-\left(x^2-2x+2\right)\)

\(=-\left(x^2-2x+1+1\right)\)

\(=-\left(x-1\right)^2-1\)

Ta có: \(\left(x-1\right)^2\ge0\forall x\Rightarrow-\left(x-1\right)^2\le0\forall x\Rightarrow-\left(x-1\right)^2-1\le0\)

Vậy biểu thức P luôn có giá trị âm với mọi giá trị của biến

b, \(Q=-x^2-y^2+8x+4y-21\)

\(=-\left(x^2-8x+16+y^2-4y+4+1\right)\)

\(=-\left(x-4\right)^2-\left(y-2\right)^2-1\)

Ta có: \(\left(x-4\right)^2\ge0\forall x\Rightarrow-\left(x-4\right)^2\le0\)

\(\left(y-2\right)^2\ge0\forall x\Rightarrow-\left(y-2\right)\le0\)

Từ 2 điều trên \(\Rightarrow-\left(x-4\right)^2-\left(y-2\right)^2\le0\Rightarrow-\left(x-4\right)^2-\left(y-2\right)^2-1\le0\)Vậy biểu thức Q luôn có giá trị âm với mọi giá trị của biến

Bình luận (2)

Các câu hỏi tương tự
NA
Xem chi tiết
TN
Xem chi tiết
LH
Xem chi tiết
TH
Xem chi tiết
H24
Xem chi tiết
NC
Xem chi tiết
DN
Xem chi tiết
LN
Xem chi tiết
VC
Xem chi tiết