Bài 5: Lũy thừa của một số hữu tỉ

LK

a,\(Cho\dfrac{a}{b}=\dfrac{c}{d}CMR,\dfrac{4a^4+5b^4}{4c^4+5d^4}=\dfrac{a^2b^2}{c^2d^2}\)

b,Cho\(\dfrac{a}{b}=\dfrac{c}{d}CMR,\dfrac{a^{2004}-b^{2004}}{a^{2004}+b^{20004}}=\dfrac{c^{2004}-d^{2004}}{c^{2004}+d^{2004}}\)

ND
6 tháng 9 2017 lúc 13:42

a.Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\) => \(\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

=> \(\dfrac{4\left(bk\right)^4+5b^4}{4\left(dk\right)^4+5d^4}=\dfrac{b^4\left(4k^4+5\right)}{d^4\left(4k^4+5\right)}=\dfrac{b^4}{d^4}\)(1)

\(\dfrac{a^2b^2}{c^2d^2}=\dfrac{k^2b^2b^2}{k^2d^2d^2}=\dfrac{b^4}{d^4}\)(2)

Từ (1) và (2) suy ra: \(\dfrac{4a^4+5b^4}{4c^4+5d^4}=\dfrac{a^2b^2}{c^2d^2}\)

b.Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\) => \(\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

=> \(\dfrac{\left(bk\right)^{2004}-b^{2004}}{\left(bk\right)^{2004}+b^{2004}}=\dfrac{b^{2004}\left(k^{2004}-1\right)}{b^{2004}\left(k^{2004}+1\right)}=\dfrac{k^{2004}-1}{k^{2004}+1}\) (1)

\(\dfrac{\left(dk\right)^{2004}-d^{2004}}{\left(dk\right)^{2004}+d^{2004}}=\dfrac{d^{2004}\left(k^{2004}-1\right)}{d^{2004}\left(k^{2004}+1\right)}=\dfrac{k^{2004}-1}{k^{2004}+1}\) (2)

Từ (1) và (2) suy ra: \(\dfrac{a^{2004}-b^{2004}}{a^{2004}+b^{2004}}=\dfrac{c^{2004}-d^{2004}}{c^{2004}+d^{2004}}\)

Bình luận (0)
MS
6 tháng 9 2017 lúc 14:16

Đặt: \(\dfrac{a}{b}=\dfrac{c}{d}=k\Leftrightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

\(\left\{{}\begin{matrix}\dfrac{4a^4+5b^4}{4c^4+5d^4}=\dfrac{4b^4k^4+5b^4}{4d^4k^4+5d^4}=\dfrac{b^4\left(4k^4+5\right)}{d^4\left(k^4+5\right)}=\dfrac{b^4}{d^4}\\\dfrac{a^2b^2}{c^2d^2}=\dfrac{bk^2b^2}{dk^2d^2}=\dfrac{k^2b^4}{k^2d^4}=\dfrac{b^4}{d^4}\end{matrix}\right.\)

Vậy.....

\(\left\{{}\begin{matrix}\dfrac{a^{2004}-b^{2004}}{a^{2004}+b^{2004}}=\dfrac{b^{2004}k^{2004}-b^{2004}}{b^{2004}k^{2004}+b^{2004}}=\dfrac{b^{2004}\left(k^{2004}-1\right)}{b^{2004}\left(k^{2004}+1\right)}=\dfrac{k^{2004}-1}{k^{2004}+1}\\\dfrac{c^{2004}-d^{2004}}{c^{2004}+d^{2004}}=\dfrac{d^{2004}k^{2004}-d^{2004}}{d^{2004}k^{2004}+d^{2004}}=\dfrac{d^{2004}\left(k^{2004}-1\right)}{d^{2004}\left(k^{2004}+1\right)}=\dfrac{k^{2004}-1}{k^{2004}+1}\end{matrix}\right.\)

Vậy....

Bình luận (1)
SN
6 tháng 9 2017 lúc 16:30

Theo đề bài, ta có:
\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a}{c}=\dfrac{b}{d}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a^4}{c^4}=\dfrac{b^4}{d^4}=\dfrac{4a^4}{4c^4}=\dfrac{5b^4}{5d^4}=\dfrac{4a^4+5b^4}{4c^4+5d^4}\left(1\right)\)
Ta có: \(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a^2}{b^2}=\dfrac{c^2}{d^2}=\dfrac{a^2b^2}{b^4}=\dfrac{c^2d^2}{d^4}=\dfrac{a^2b^2}{c^2d^2}=\dfrac{b^4}{d^4}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\dfrac{4a^4+5b^4}{4c^4+5d^4}=\dfrac{a^2b^2}{c^2d^2}\)(đpcm)
b/ Theo đề bài, ta có:
\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a}{c}=\dfrac{b}{d}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a^{2004}}{c^{2004}}=\dfrac{b^{2004}}{d^{2004}}=\dfrac{a^{2004}+b^{2004}}{c^{2004}+d^{2004}}\left(1\right)\)
\(\Rightarrow\dfrac{a^{2004}}{c^{2004}}=\dfrac{b^{2004}}{d^{2004}}=\dfrac{a^{2004}-b^{2004}}{c^{2004}-d^{2004}}\left(2\right)\)
Từ (1) và (2)\(\Rightarrow\dfrac{a^{2004}+b^{2004}}{c^{2004}+d^{2004}}=\dfrac{a^{2004}-b^{2004}}{c^{2004}-d^{2004}}=\dfrac{a^{2004}-b^{2004}}{a^{2004}+b^{2004}}=\dfrac{c^{2004}-d^{2004}}{c^{2004}+d^{2004}}\left(đpcm\right)\)

Bình luận (0)

Các câu hỏi tương tự
HO
Xem chi tiết
TN
Xem chi tiết
LK
Xem chi tiết
VV
Xem chi tiết
H24
Xem chi tiết
NN
Xem chi tiết
NB
Xem chi tiết
LK
Xem chi tiết