Bài 7: Phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức

HN

a) (x3 – x2 + x)(121 – 25y2 – 10y) – (x3 – x2 + x) – (121 – 25y2 – 10y) +1

b) X4 – 14x3 + 71x2 – 154x + 120 

Giúp mik vs

 

NT
9 tháng 9 2021 lúc 14:21

a: \(\left(x^3-x^2+x\right)\left(121-25y^2-10y\right)-\left(x^3-x^2+x\right)-\left(121-25y^2-10y\right)+1\)

\(=\left(x^3-x^2+x\right)\left(120-25y^2-10y\right)-\left(120-25y^2-10y\right)\)

\(=\left(120-25y^2-10y\right)\left(x^3-x^2+x-1\right)\)

\(=-\left[\left(25y^2+10y+1\right)-121\right]\left[x^2\left(x-1\right)+\left(x-1\right)\right]\)

\(=-\left(5y-10\right)\left(5y-12\right)\left(x-1\right)\left(x^2+1\right)\)

\(=-5\left(y-2\right)\left(5y-12\right)\left(x-1\right)\left(x^2+1\right)\)

b: \(x^4-14x^3+71x^2-154x+120\)

\(=x^4-5x^3-9x^3+45x^2+26x^2-130x-24x+120\)

\(=\left(x-5\right)\left(x^3-9x^2+26x-24\right)\)

\(=\left(x-5\right)\left(x^3-4x^2-5x^2+20x+6x-24\right)\)

\(=\left(x-5\right)\left(x-4\right)\left(x^2-5x+6\right)\)

\(=\left(x-5\right)\left(x-4\right)\left(x-3\right)\left(x-2\right)\)

Bình luận (0)

Các câu hỏi tương tự
HN
Xem chi tiết
DH
Xem chi tiết
H24
Xem chi tiết
TA
Xem chi tiết
HN
Xem chi tiết
IT
Xem chi tiết
HH
Xem chi tiết
QN
Xem chi tiết
MP
Xem chi tiết