Bài 9: Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp

KN

a) Tìm Min A biết: A= a4 - 2a3 +3a2 - 4a + 5

b) Phân tích đa thức thành nhân tử :

1. M= 3xyz +x( y2 +z2) +y( x2 +z2) +z( x2 +y2)

2. Q= ( a+b+c )3 - a3 - b3 - c3

AH
13 tháng 10 2018 lúc 10:25

Bài 1:

\(A=a^4-2a^3+3a^2-4a+5\)

\(=(a^4-2a^3+a^2)+2a^2-4a+5\)

\(=(a^4-2a^3+a^2)+2(a^2-2a+1)+3\)

\(=(a^2-a)^2+2(a-1)^2+3\)

\(=a^2(a-1)^2+2(a-1)^2+3=(a-1)^2(a^2+2)+3\)

\((a-1)^2\geq 0,\forall a\in\mathbb{R}; a^2+2>0, \forall a\)

\(\Rightarrow A=(a-1)^2(a^2+2)+3\geq 0+3=3\)

Vậy \(A_{\min}=3\Leftrightarrow (a-1)^2=0\Leftrightarrow a=1\)

Bình luận (0)
AH
13 tháng 10 2018 lúc 10:32

Bài 2:
a)

\(M=3xyz+x(y^2+z^2)+y(x^2+z^2)+z(x^2+y^2)\)

\(=3xyz+x^2y+x^2z+yx^2+yz^2+zx^2+zy^2\)

\(=(x^2y+xy^2+xyz)+(y^2z+yz^2+xyz)+(zx^2+z^2x+xyz)\)

\(=xy(x+y+z)+yz(y+z+x)+xz(z+x+y)\)

\(=(x+y+z)(xy+yz+xz)\)

b)

\(Q=(a+b+c)^3-a^3-b^3-c^3\)

\(=[(a+b)+c]^3-a^3-b^3-c^3\)

\(=(a+b)^3+c^3+3(a+b)^2c+3(a+b)c^2-a^3-b^3-c^3\)

\(=a^3+b^3+3ab^2+3a^2b+c^3+3(a+b)^2c+3(a+b)c^2-a^3-b^3-c^3\)

\(=3ab(a+b)+3(a+b)c(a+b+c)\)

\(=3(a+b)[ab+c(a+b+c)]=3(a+b)[a(b+c)+c(b+c)]\)

\(=3(a+b)(b+c)(a+c)\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
DD
Xem chi tiết
DD
Xem chi tiết
H24
Xem chi tiết
PN
Xem chi tiết
HP
Xem chi tiết
FH
Xem chi tiết
LT
Xem chi tiết
LT
Xem chi tiết