=>(x-2)2=2(x-2)
=>(x-2)(x-4)=0
=>x=2 hoặc x=4
\(x-2=\left(x-2\right)^{^2}\)
\(\dfrac{1}{x-2}=1\)
\(x-2=1\)
\(x=3\)
`=> 2 . (x-2) = (x-2)^2 `
`=> (x-2)(x-2 -2) = 0`
`<=> (x-2)(x-4) = 0`
`<=>` \(\left[{}\begin{matrix}x=2\\x=4\end{matrix}\right.\)
`2.(x-2) = x^2 - 4x +4 `
`<=> 2(x-2) = (x-2)^2`
`<=> 2(x-2) - (x-2)^2 =0`
`<=> (x-2)[2-x+2)] =0`
`<=>(x-2)(4-x)=0`
`<=>`\(\left[{}\begin{matrix}x-2=0\\4-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=4\end{matrix}\right.\)
Vậy `S={2;4}`
\(2.\left(x-2\right)=x^2-4x+4\)
\(2\left(x-2\right)=\left(x-2\right)^2\)
\(\left(x-2\right)^2-2\left(x-2\right)=0\)
\(\left(x-2\right)\left(x-2-2\right)=0\)
\(\left(x-2\right)\left(x-4\right)=0\)
\(\Rightarrow x-2=0\) hoặc \(x-4=0\)
*) \(x-2=0\)
\(x=2\)
*) \(x-4=0\)
\(x=4\)
Vậy \(x=2\); \(x=4\)